Documentation Verification Report

Equiv

πŸ“ Source: Mathlib/Topology/UniformSpace/Equiv.lean

Statistics

MetricCount
DefinitionstoUniformEquivOfIsUniformInducing, UniformEquiv, apply, symm_apply, changeInv, finTwoArrow, funUnique, image, instEquivLike, ofIsUniformEmbedding, piCongr, piCongrLeft, piCongrRight, piFinTwo, prodAssoc, prodComm, prodCongr, prodPUnit, prodPunit, punitProd, refl, setCongr, subtype, toEquiv, toHomeomorph, trans, ulift, Β«term_≃ᡀ_Β»
28
Theoremsapply_symm_apply, bijective, coe_prodComm, coe_prodCongr, coe_punitProd, coe_symm_toEquiv, coe_toEquiv, comap_eq, completeSpace_iff, continuous, continuous_symm, ext, ext_iff, finTwoArrow_apply, finTwoArrow_symm_apply, funUnique_apply, funUnique_symm_apply, image_preimage, image_symm, injective, isUniformEmbedding, isUniformInducing, piCongrLeft_apply, piCongrLeft_apply_apply, piCongrLeft_refl, piCongrLeft_symm_apply, piCongrLeft_toEquiv, piCongrRight_apply, piCongrRight_refl, piCongrRight_symm, piCongrRight_toEquiv, piCongr_apply, piCongr_toEquiv, piFinTwo_apply, piFinTwo_symm_apply, preimage_image, preimage_symm, prodComm_symm, prodCongr_symm, prodPUnit_apply, range_coe, refl_apply, refl_symm, self_comp_symm, subtype_apply_coe, subtype_symm_apply_coe, surjective, symm_apply_apply, symm_comp_self, toEquiv_injective, toHomeomorph_apply, toHomeomorph_symm_apply, trans_apply, uniformContinuous, uniformContinuous_invFun, uniformContinuous_symm, uniformContinuous_toFun, uniformEquiv_mk_coe, uniformEquiv_mk_coe_symm
59
Total87

Equiv

Definitions

NameCategoryTheorems
toUniformEquivOfIsUniformInducing πŸ“–CompOpβ€”

UniformEquiv

Definitions

NameCategoryTheorems
changeInv πŸ“–CompOpβ€”
finTwoArrow πŸ“–CompOp
2 mathmath: finTwoArrow_apply, finTwoArrow_symm_apply
funUnique πŸ“–CompOp
2 mathmath: funUnique_apply, funUnique_symm_apply
image πŸ“–CompOpβ€”
instEquivLike πŸ“–CompOp
55 mathmath: funUnique_apply, refl_apply, AbstractCompletion.mapEquiv_coe, Padic.withValUniformEquiv_norm_le_one_iff, self_comp_symm, Valuation.IsEquiv.valuedCompletion_le_one_iff, coe_toEquiv, continuous_symm, trans_apply, uniformContinuous_symm, AbstractCompletion.uniformContinuous_compareEquiv, UniformSpace.Completion.mapEquiv_coe, image_preimage, piCongrLeft_symm_apply, coe_prodComm, apply_symm_apply, coe_symm_toEquiv, finTwoArrow_apply, symm_comp_self, image_symm, finTwoArrow_symm_apply, comap_eq, Padic.toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, injective, continuous, funUnique_symm_apply, uniformContinuous, preimage_symm, ext_iff, prodPUnit_apply, Padic.withValUniformEquiv_cast_apply, isUniformInducing, range_coe, Metric.Snowflaking.uniformEquiv_symm_apply, uniformEquiv_mk_coe, coe_punitProd, symm_apply_apply, bijective, coe_prodCongr, CompareReals.compare_uc_symm, isUniformEmbedding, Metric.Snowflaking.uniformEquiv_apply, piCongr_apply, uniformEquiv_mk_coe_symm, toHomeomorph_symm_apply, piCongrLeft_apply_apply, toHomeomorph_apply, CompareReals.compare_uc, surjective, piFinTwo_symm_apply, piCongrLeft_apply, piFinTwo_apply, preimage_image, AbstractCompletion.uniformContinuous_compareEquiv_symm, piCongrRight_apply
ofIsUniformEmbedding πŸ“–CompOpβ€”
piCongr πŸ“–CompOp
2 mathmath: piCongr_toEquiv, piCongr_apply
piCongrLeft πŸ“–CompOp
5 mathmath: piCongrLeft_refl, piCongrLeft_symm_apply, piCongrLeft_toEquiv, piCongrLeft_apply_apply, piCongrLeft_apply
piCongrRight πŸ“–CompOp
4 mathmath: piCongrRight_refl, piCongrRight_symm, piCongrRight_toEquiv, piCongrRight_apply
piFinTwo πŸ“–CompOp
2 mathmath: piFinTwo_symm_apply, piFinTwo_apply
prodAssoc πŸ“–CompOpβ€”
prodComm πŸ“–CompOp
2 mathmath: coe_prodComm, prodComm_symm
prodCongr πŸ“–CompOp
2 mathmath: prodCongr_symm, coe_prodCongr
prodPUnit πŸ“–CompOp
1 mathmath: prodPUnit_apply
prodPunit πŸ“–CompOpβ€”
punitProd πŸ“–CompOp
1 mathmath: coe_punitProd
refl πŸ“–CompOp
4 mathmath: refl_apply, piCongrLeft_refl, refl_symm, piCongrRight_refl
setCongr πŸ“–CompOpβ€”
subtype πŸ“–CompOp
2 mathmath: subtype_apply_coe, subtype_symm_apply_coe
toEquiv πŸ“–CompOp
13 mathmath: WithLp.toEquiv_uniformEquivProd, PiLp.toEquiv_uniformEquiv, coe_toEquiv, Metric.Snowflaking.uniformEquiv_toEquiv, coe_symm_toEquiv, toEquiv_injective, piCongrLeft_toEquiv, uniformContinuous_toFun, piCongr_toEquiv, LaurentSeries.comparePkg_eq_extension, piCongr_apply, piCongrRight_toEquiv, uniformContinuous_invFun
toHomeomorph πŸ“–CompOp
4 mathmath: PiLp.toHomeomorph_uniformEquiv, WithLp.toHomeomorph_uniformEquivProd, toHomeomorph_symm_apply, toHomeomorph_apply
trans πŸ“–CompOp
1 mathmath: trans_apply
ulift πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.apply_symm_apply
bijective πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.bijective
coe_prodComm πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
instUniformSpaceProd
EquivLike.toFunLike
instEquivLike
prodComm
β€”β€”
coe_prodCongr πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
instUniformSpaceProd
EquivLike.toFunLike
instEquivLike
prodCongr
β€”β€”
coe_punitProd πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
instUniformSpaceProd
instUniformSpacePUnit
EquivLike.toFunLike
instEquivLike
punitProd
β€”β€”
coe_symm_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toEquiv
UniformEquiv
instEquivLike
symm
β€”β€”
coe_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
UniformEquiv
instEquivLike
β€”β€”
comap_eq πŸ“–mathematicalβ€”UniformSpace.comap
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
β€”IsUniformInducing.comap_uniformSpace
isUniformInducing
completeSpace_iff πŸ“–mathematicalβ€”CompleteSpaceβ€”completeSpace_congr
isUniformEmbedding
continuous πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
β€”UniformContinuous.continuous
uniformContinuous
continuous_symm πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”UniformContinuous.continuous
uniformContinuous_symm
ext πŸ“–β€”DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
β€”β€”toEquiv_injective
Equiv.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
β€”ext
finTwoArrow_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
Pi.uniformSpace
instUniformSpaceProd
EquivLike.toFunLike
instEquivLike
finTwoArrow
β€”β€”
finTwoArrow_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
instUniformSpaceProd
Pi.uniformSpace
EquivLike.toFunLike
instEquivLike
symm
finTwoArrow
Matrix.vecCons
Matrix.vecEmpty
β€”β€”
funUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
Pi.uniformSpace
EquivLike.toFunLike
instEquivLike
funUnique
Unique.instInhabited
β€”β€”
funUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
Pi.uniformSpace
EquivLike.toFunLike
instEquivLike
symm
funUnique
uniqueElim
β€”β€”
image_preimage πŸ“–mathematicalβ€”Set.image
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
Set.preimage
β€”Equiv.image_preimage
image_symm πŸ“–mathematicalβ€”Set.image
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
symm
Set.preimage
β€”Equiv.image_eq_preimage_symm
injective πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.injective
isUniformEmbedding πŸ“–mathematicalβ€”IsUniformEmbedding
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
β€”isUniformInducing
injective
isUniformInducing πŸ“–mathematicalβ€”IsUniformInducing
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
β€”IsUniformInducing.of_comp
uniformContinuous
symm_comp_self
piCongrLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
Pi.uniformSpace
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
instEquivLike
piCongrLeft
Equiv.symm
Equiv.piCongrLeft'
β€”β€”
piCongrLeft_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
Pi.uniformSpace
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
instEquivLike
piCongrLeft
β€”Equiv.piCongrLeft_apply_apply
piCongrLeft_refl πŸ“–mathematicalβ€”piCongrLeft
Equiv.refl
refl
Pi.uniformSpace
β€”β€”
piCongrLeft_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
Pi.uniformSpace
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
instEquivLike
symm
piCongrLeft
β€”β€”
piCongrLeft_toEquiv πŸ“–mathematicalβ€”toEquiv
Pi.uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
piCongrLeft
Equiv.piCongrLeft
β€”β€”
piCongrRight_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
Pi.uniformSpace
EquivLike.toFunLike
instEquivLike
piCongrRight
β€”β€”
piCongrRight_refl πŸ“–mathematicalβ€”piCongrRight
refl
Pi.uniformSpace
β€”β€”
piCongrRight_symm πŸ“–mathematicalβ€”symm
Pi.uniformSpace
piCongrRight
β€”β€”
piCongrRight_toEquiv πŸ“–mathematicalβ€”toEquiv
Pi.uniformSpace
piCongrRight
Equiv.piCongrRight
β€”β€”
piCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
Pi.uniformSpace
EquivLike.toFunLike
instEquivLike
piCongr
Equiv
Equiv.instEquivLike
Equiv.piCongrLeft
Equiv.piCongrRight
toEquiv
β€”β€”
piCongr_toEquiv πŸ“–mathematicalβ€”toEquiv
Pi.uniformSpace
piCongr
Equiv.trans
Equiv.piCongrRight
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.piCongrLeft
β€”β€”
piFinTwo_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
Pi.uniformSpace
instUniformSpaceProd
EquivLike.toFunLike
instEquivLike
piFinTwo
β€”β€”
piFinTwo_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
instUniformSpaceProd
Pi.uniformSpace
EquivLike.toFunLike
instEquivLike
symm
piFinTwo
Fin.cons
finZeroElim
β€”β€”
preimage_image πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
Set.image
β€”Equiv.preimage_image
preimage_symm πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
symm
Set.image
β€”Equiv.image_eq_preimage_symm
prodComm_symm πŸ“–mathematicalβ€”symm
instUniformSpaceProd
prodComm
β€”β€”
prodCongr_symm πŸ“–mathematicalβ€”symm
instUniformSpaceProd
prodCongr
β€”β€”
prodPUnit_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
instUniformSpaceProd
instUniformSpacePUnit
EquivLike.toFunLike
instEquivLike
prodPUnit
β€”β€”
range_coe πŸ“–mathematicalβ€”Set.range
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
Set.univ
β€”EquivLike.range_eq_univ
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
refl
β€”β€”
refl_symm πŸ“–mathematicalβ€”symm
refl
β€”β€”
self_comp_symm πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”apply_symm_apply
subtype_apply_coe πŸ“–mathematicalDFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
instUniformSpaceSubtype
subtype
β€”β€”
subtype_symm_apply_coe πŸ“–mathematicalDFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
instUniformSpaceSubtype
symm
subtype
β€”β€”
surjective πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.surjective
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_apply_apply
symm_comp_self πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”symm_apply_apply
toEquiv_injective πŸ“–mathematicalβ€”UniformEquiv
Equiv
toEquiv
β€”β€”
toHomeomorph_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
UniformSpace.toTopologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorph
UniformEquiv
instEquivLike
β€”β€”
toHomeomorph_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
UniformSpace.toTopologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorph
UniformEquiv
instEquivLike
symm
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
trans
β€”β€”
uniformContinuous πŸ“–mathematicalβ€”UniformContinuous
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
β€”uniformContinuous_toFun
uniformContinuous_invFun πŸ“–mathematicalβ€”UniformContinuous
Equiv.invFun
toEquiv
β€”β€”
uniformContinuous_symm πŸ“–mathematicalβ€”UniformContinuous
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”uniformContinuous_invFun
uniformContinuous_toFun πŸ“–mathematicalβ€”UniformContinuous
Equiv.toFun
toEquiv
β€”β€”
uniformEquiv_mk_coe πŸ“–mathematicalUniformContinuous
Equiv.toFun
Equiv.invFun
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
Equiv
Equiv.instEquivLike
β€”β€”
uniformEquiv_mk_coe_symm πŸ“–mathematicalUniformContinuous
Equiv.toFun
Equiv.invFun
DFunLike.coe
UniformEquiv
EquivLike.toFunLike
instEquivLike
symm
Equiv
Equiv.instEquivLike
Equiv.symm
β€”β€”

UniformEquiv.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
UniformEquiv πŸ“–CompData
56 mathmath: UniformEquiv.funUnique_apply, UniformEquiv.refl_apply, AbstractCompletion.mapEquiv_coe, Padic.withValUniformEquiv_norm_le_one_iff, UniformEquiv.self_comp_symm, Valuation.IsEquiv.valuedCompletion_le_one_iff, UniformEquiv.coe_toEquiv, UniformEquiv.continuous_symm, UniformEquiv.trans_apply, UniformEquiv.uniformContinuous_symm, AbstractCompletion.uniformContinuous_compareEquiv, UniformSpace.Completion.mapEquiv_coe, UniformEquiv.image_preimage, UniformEquiv.piCongrLeft_symm_apply, UniformEquiv.coe_prodComm, UniformEquiv.apply_symm_apply, UniformEquiv.coe_symm_toEquiv, UniformEquiv.finTwoArrow_apply, UniformEquiv.symm_comp_self, UniformEquiv.image_symm, UniformEquiv.finTwoArrow_symm_apply, UniformEquiv.toEquiv_injective, UniformEquiv.comap_eq, Padic.toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, UniformEquiv.injective, UniformEquiv.continuous, UniformEquiv.funUnique_symm_apply, UniformEquiv.uniformContinuous, UniformEquiv.preimage_symm, UniformEquiv.ext_iff, UniformEquiv.prodPUnit_apply, Padic.withValUniformEquiv_cast_apply, UniformEquiv.isUniformInducing, UniformEquiv.range_coe, Metric.Snowflaking.uniformEquiv_symm_apply, UniformEquiv.uniformEquiv_mk_coe, UniformEquiv.coe_punitProd, UniformEquiv.symm_apply_apply, UniformEquiv.bijective, UniformEquiv.coe_prodCongr, CompareReals.compare_uc_symm, UniformEquiv.isUniformEmbedding, Metric.Snowflaking.uniformEquiv_apply, UniformEquiv.piCongr_apply, UniformEquiv.uniformEquiv_mk_coe_symm, UniformEquiv.toHomeomorph_symm_apply, UniformEquiv.piCongrLeft_apply_apply, UniformEquiv.toHomeomorph_apply, CompareReals.compare_uc, UniformEquiv.surjective, UniformEquiv.piFinTwo_symm_apply, UniformEquiv.piCongrLeft_apply, UniformEquiv.piFinTwo_apply, UniformEquiv.preimage_image, AbstractCompletion.uniformContinuous_compareEquiv_symm, UniformEquiv.piCongrRight_apply
Β«term_≃ᡀ_Β» πŸ“–CompOpβ€”

---

← Back to Index