Documentation Verification Report

HeineCantor

πŸ“ Source: Mathlib/Topology/UniformSpace/HeineCantor.lean

Statistics

MetricCount
Definitions0
TheoremsuniformContinuous_of_continuous, uniformEquicontinuous_of_equicontinuous, tendstoUniformly, uniformContinuous_of_tendsto_cocompact, tendstoUniformly, uniformContinuous_of_continuous, uniformContinuous_of_continuous, mem_uniformity_of_prod, uniformContinuousAt_of_continuousAt, uniformContinuousOn_of_continuous
10
Total10

CompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
uniformContinuous_of_continuous πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
UniformContinuousβ€”nhdsSet_diagonal_eq_uniformity
Continuous.tendsto_nhdsSet
Continuous.prodMap
Set.mapsTo_prodMap_diagonal
nhdsSet_diagonal_le_uniformity
uniformEquicontinuous_of_equicontinuous πŸ“–mathematicalEquicontinuous
UniformSpace.toTopologicalSpace
UniformEquicontinuousβ€”uniformEquicontinuous_iff_uniformContinuous
uniformContinuous_of_continuous
equicontinuous_iff_continuous

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoUniformly πŸ“–mathematicalContinuous
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
TendstoUniformly
nhds
β€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
IsCompact.uniformContinuousOn_of_continuous
IsCompact.prod
isCompact_univ
continuousOn
UniformContinuousOn.tendstoUniformly
uniformContinuous_of_tendsto_cocompact πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
Filter.Tendsto
Filter.cocompact
nhds
UniformContinuousβ€”uniformContinuous_def
comp_symm_mem_uniformity_sets
Filter.mem_cocompact
mem_nhds_left
Filter.mem_of_superset
symmetrize_mem_uniformity
IsCompact.uniformContinuousAt_of_continuousAt
continuousAt
SetRel.symm

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoUniformly πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
ContinuousOn
instTopologicalSpaceProd
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
SProd.sprod
Set.instSProd
Set.univ
TendstoUniformlyβ€”LocallyCompactSpace.local_compact_nhds
IsCompact.uniformContinuousOn_of_continuous
IsCompact.prod
isCompact_univ
mono
Set.prod_mono
Set.Subset.rfl
UniformContinuousOn.tendstoUniformly

HasCompactMulSupport

Theorems

NameKindAssumesProvesValidatesDepends On
uniformContinuous_of_continuous πŸ“–mathematicalHasCompactMulSupport
UniformSpace.toTopologicalSpace
Continuous
UniformContinuousβ€”Continuous.uniformContinuous_of_tendsto_cocompact
is_one_at_infty

HasCompactSupport

Theorems

NameKindAssumesProvesValidatesDepends On
uniformContinuous_of_continuous πŸ“–mathematicalHasCompactSupport
UniformSpace.toTopologicalSpace
Continuous
UniformContinuousβ€”Continuous.uniformContinuous_of_tendsto_cocompact
is_zero_at_infty

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
mem_uniformity_of_prod πŸ“–mathematicalIsCompact
ContinuousOn
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
SProd.sprod
Set
Set.instSProd
Set.instMembership
Filter
Filter.instMembership
uniformity
nhdsWithinβ€”induction_on
Filter.univ_mem
instIsEmptyFalse
Filter.inter_mem
comp_symm_of_uniformity
mem_nhdsWithin_prod_iff
mem_nhds_left
mem_of_mem_nhdsWithin
SetRel.prodMk_mem_comp
uniformContinuousAt_of_continuousAt πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
ContinuousAt
Set
Filter
Filter.instMembership
uniformity
setOfβ€”comp_symm_mem_uniformity_sets
elim_nhds_subcover'
Filter.mem_of_superset
Filter.biInter_finset_mem
Set.mem_iUnionβ‚‚
SetRel.symm
UniformSpace.mem_ball_self
Set.mem_iInterβ‚‚
exists_mem_nhds_ball_subset_of_mem_nhds
ContinuousAt.preimage_mem_nhds
mem_nhds_left
uniformContinuousOn_of_continuous πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
ContinuousOn
UniformContinuousOnβ€”uniformContinuousOn_iff_restrict
CompactSpace.uniformContinuous_of_continuous
isCompact_iff_compactSpace
continuousOn_iff_continuous_restrict

---

← Back to Index