Documentation Verification Report

LocallyUniformConvergence

πŸ“ Source: Mathlib/Topology/UniformSpace/LocallyUniformConvergence.lean

Statistics

MetricCount
DefinitionsTendstoLocallyUniformly, TendstoLocallyUniformlyOn
2
TheoremstendstoLocallyUniformlyOn_iff_forall_tendsto, comp, congr_inseparable, congr_inseparable_right, congr_right, piProd, prodMk, tendstoLocallyUniformlyOn, comp, congr_inseparable, congr_inseparable_right, congr_right, mono, piProd, prodMk, tendsto_at, union, unique, tendstoLocallyUniformly, tendstoLocallyUniformlyOn, comp_tendstoLocallyUniformly, comp_tendstoLocallyUniformlyOn, comp_tendstoLocallyUniformly, comp_tendstoLocallyUniformlyOn, tendstoLocallyUniformlyOn_TFAE, tendstoLocallyUniformlyOn_biUnion, tendstoLocallyUniformlyOn_iUnion, tendstoLocallyUniformlyOn_iff_filter, tendstoLocallyUniformlyOn_iff_forall_isCompact, tendstoLocallyUniformlyOn_iff_forall_tendsto, tendstoLocallyUniformlyOn_iff_tendstoLocallyUniformly_comp_coe, tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact, tendstoLocallyUniformlyOn_of_forall_exists_nhds, tendstoLocallyUniformlyOn_sUnion, tendstoLocallyUniformlyOn_univ, tendstoLocallyUniformly_iff_filter, tendstoLocallyUniformly_iff_forall_isCompact, tendstoLocallyUniformly_iff_forall_tendsto, tendstoLocallyUniformly_iff_tendstoUniformly_of_compactSpace, tendstoLocallyUniformly_of_forall_exists_nhds
40
Total42

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoLocallyUniformlyOn_iff_forall_tendsto πŸ“–mathematicalIsOpenTendstoLocallyUniformlyOn
Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
nhds
uniformity
β€”tendstoLocallyUniformlyOn_iff_forall_tendsto
nhdsWithin_eq

TendstoLocallyUniformly

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”TendstoLocallyUniformly
Continuous
β€”β€”tendstoLocallyUniformlyOn_univ
TendstoLocallyUniformlyOn.comp
Set.mapsTo_univ
continuousOn_univ
congr_inseparable πŸ“–β€”TendstoLocallyUniformly
Filter.Eventually
β€”β€”tendstoLocallyUniformlyOn_univ
TendstoLocallyUniformlyOn.congr_inseparable
tendstoLocallyUniformlyOn
congr_inseparable_right πŸ“–β€”TendstoLocallyUniformly
Inseparable
UniformSpace.toTopologicalSpace
β€”β€”tendstoLocallyUniformlyOn_univ
TendstoLocallyUniformlyOn.congr_inseparable_right
tendstoLocallyUniformlyOn
congr_right πŸ“–β€”TendstoLocallyUniformlyβ€”β€”congr_inseparable_right
Inseparable.of_eq
piProd πŸ“–mathematicalTendstoLocallyUniformlyinstUniformSpaceProd
Pi.prod
β€”prodMk
prodMk πŸ“–mathematicalTendstoLocallyUniformlyinstUniformSpaceProdβ€”tendstoLocallyUniformlyOn_univ
TendstoLocallyUniformlyOn.prodMk
tendstoLocallyUniformlyOn πŸ“–mathematicalTendstoLocallyUniformlyTendstoLocallyUniformlyOnβ€”TendstoLocallyUniformlyOn.mono
tendstoLocallyUniformlyOn_univ
Set.subset_univ

TendstoLocallyUniformlyOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”TendstoLocallyUniformlyOn
Set.MapsTo
ContinuousOn
β€”β€”ContinuousWithinAt.preimage_mem_nhdsWithin'
nhdsWithin_mono
Set.MapsTo.image_subset
Filter.Eventually.mono
congr_inseparable πŸ“–β€”TendstoLocallyUniformlyOn
Filter.Eventually
β€”β€”Filter.eventually_prod_principal_iff
tendstoLocallyUniformlyOn_iff_forall_tendsto
forallβ‚‚_imp
Filter.HasBasis.tendsto_right_iff
uniformity_hasBasis_open
Filter.Eventually.mp
Filter.Eventually.mono
Filter.Eventually.filter_mono
Filter.prod_mono_right
inf_le_right
Inseparable.mem_open_iff
Inseparable.prod
Inseparable.rfl
congr_inseparable_right πŸ“–β€”TendstoLocallyUniformlyOn
Inseparable
UniformSpace.toTopologicalSpace
β€”β€”Filter.eventually_prod_principal_iff
Filter.Eventually.of_forall
tendstoLocallyUniformlyOn_iff_forall_tendsto
forallβ‚‚_imp
Filter.HasBasis.tendsto_right_iff
uniformity_hasBasis_open
Filter.Eventually.mp
Filter.Eventually.mono
Filter.Eventually.filter_mono
Filter.prod_mono_right
inf_le_right
Inseparable.mem_open_iff
Inseparable.prod
Inseparable.rfl
congr_right πŸ“–β€”TendstoLocallyUniformlyOn
Set.EqOn
β€”β€”congr_inseparable_right
Inseparable.of_eq
mono πŸ“–β€”TendstoLocallyUniformlyOn
Set
Set.instHasSubset
β€”β€”nhdsWithin_mono
Filter.Eventually.mono
piProd πŸ“–mathematicalTendstoLocallyUniformlyOninstUniformSpaceProd
Pi.prod
β€”prodMk
prodMk πŸ“–mathematicalTendstoLocallyUniformlyOninstUniformSpaceProdβ€”tendstoLocallyUniformlyOn_iff_forall_tendsto
uniformity_prod_eq_comap_prod
Filter.tendsto_comap_iff
Filter.Tendsto.prodMk
tendsto_at πŸ“–mathematicalTendstoLocallyUniformlyOn
Set
Set.instMembership
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
β€”TendstoUniformlyOnFilter.tendsto_at
tendstoLocallyUniformlyOn_iff_filter
Filter.principal_singleton
pure_le_nhdsWithin
union πŸ“–mathematicalIsOpen
TendstoLocallyUniformlyOn
Set
Set.instUnion
β€”Set.sUnion_pair
tendstoLocallyUniformlyOn_sUnion
unique πŸ“–mathematicalTendstoLocallyUniformlyOnSet.EqOnβ€”tendsto_nhds_unique
tendsto_at

TendstoUniformly

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoLocallyUniformly πŸ“–mathematicalTendstoUniformlyTendstoLocallyUniformlyβ€”Filter.univ_mem

TendstoUniformlyOn

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoLocallyUniformlyOn πŸ“–mathematicalTendstoUniformlyOnTendstoLocallyUniformlyOnβ€”self_mem_nhdsWithin

UniformContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
comp_tendstoLocallyUniformly πŸ“–β€”UniformContinuous
TendstoLocallyUniformly
β€”β€”UniformContinuousOn.comp_tendstoLocallyUniformly
uniformContinuousOn
comp_tendstoLocallyUniformlyOn πŸ“–β€”UniformContinuous
TendstoLocallyUniformlyOn
β€”β€”UniformContinuousOn.comp_tendstoLocallyUniformlyOn
uniformContinuousOn
Set.mapsTo_univ
Filter.Eventually.of_forall

UniformContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp_tendstoLocallyUniformly πŸ“–β€”UniformContinuousOn
TendstoLocallyUniformly
Set
Set.instMembership
Filter.Eventually
β€”β€”tendstoLocallyUniformlyOn_univ
comp_tendstoLocallyUniformlyOn
comp_tendstoLocallyUniformlyOn πŸ“–β€”UniformContinuousOn
TendstoLocallyUniformlyOn
Set.MapsTo
Filter.Eventually
β€”β€”tendstoLocallyUniformlyOn_iff_forall_tendsto
Filter.Tendsto.comp
Filter.tendsto_inf
Filter.tendsto_principal
Filter.mp_mem
eventually_mem_nhdsWithin
Filter.univ_mem'

(root)

Definitions

NameCategoryTheorems
TendstoLocallyUniformly πŸ“–MathDef
20 mathmath: IsTopologicalGroup.tendstoLocallyUniformly_iff, tendstoLocallyUniformly_iff_forall_isCompact, hasProdLocallyUniformly_iff_tendstoLocallyUniformly, HasSumLocallyUniformly.tendstoLocallyUniformly_finsetRange, tendstoLocallyUniformly_iff_tendstoUniformly_of_compactSpace, HasProdLocallyUniformly.tendstoLocallyUniformly_finsetRange, tendstoLocallyUniformlyOn_iff_tendstoLocallyUniformly_comp_coe, Antitone.tendstoLocallyUniformly_of_forall_tendsto, EMetric.tendstoLocallyUniformly_iff, ContinuousMap.tendsto_iff_tendstoLocallyUniformly, TendstoUniformly.tendstoLocallyUniformly, tendstoLocallyUniformly_iff_forall_tendsto, tendstoLocallyUniformly_of_forall_exists_nhds, Monotone.tendstoLocallyUniformly_of_forall_tendsto, Metric.tendstoLocallyUniformly_iff, tendstoLocallyUniformlyOn_univ, hasSumLocallyUniformly_iff_tendstoLocallyUniformly, tendstoLocallyUniformly_iff_filter, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformly, IsTopologicalAddGroup.tendstoLocallyUniformly_iff
TendstoLocallyUniformlyOn πŸ“–MathDef
27 mathmath: IsOpen.tendstoLocallyUniformlyOn_iff_forall_tendsto, HasFPowerSeriesOnBall.tendstoLocallyUniformlyOn, HasFPowerSeriesWithinOnBall.tendstoLocallyUniformlyOn, EMetric.tendstoLocallyUniformlyOn_iff, hasProdLocallyUniformlyOn_iff_tendstoLocallyUniformlyOn, tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact, HasSumLocallyUniformlyOn.tendstoLocallyUniformlyOn_finsetRange, IsTopologicalAddGroup.tendstoLocallyUniformlyOn_iff, TendstoLocallyUniformly.tendstoLocallyUniformlyOn, hasSumLocallyUniformlyOn_iff_tendstoLocallyUniformlyOn, HasFPowerSeriesWithinOnBall.tendstoLocallyUniformlyOn', tendstoLocallyUniformlyOn_iff_tendstoLocallyUniformly_comp_coe, tendstoLocallyUniformlyOn_of_forall_exists_nhds, tendstoLocallyUniformlyOn_TFAE, HasProdLocallyUniformlyOn.tendstoLocallyUniformlyOn_finsetRange, Real.tendstoLocallyUniformlyOn_rpow_sub_one_log, Metric.tendstoLocallyUniformlyOn_iff, IsTopologicalGroup.tendstoLocallyUniformlyOn_iff, tendstoLocallyUniformlyOn_iff_forall_isCompact, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, Monotone.tendstoLocallyUniformlyOn_of_forall_tendsto, tendstoLocallyUniformlyOn_iff_filter, TendstoUniformlyOn.tendstoLocallyUniformlyOn, HasFPowerSeriesOnBall.tendstoLocallyUniformlyOn', Antitone.tendstoLocallyUniformlyOn_of_forall_tendsto, tendstoLocallyUniformlyOn_univ, tendstoLocallyUniformlyOn_iff_forall_tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoLocallyUniformlyOn_TFAE πŸ“–mathematicalIsOpenList.TFAE
TendstoLocallyUniformlyOn
β€”tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact
TendstoLocallyUniformlyOn.mono
Filter.HasBasis.mem_iff
compact_basis_nhds
IsOpen.mem_nhds
nhdsWithin_le_nhds
List.tfae_of_cycle
tendstoLocallyUniformlyOn_biUnion πŸ“–mathematicalIsOpen
TendstoLocallyUniformlyOn
Set.iUnion
Set
Set.instMembership
β€”tendstoLocallyUniformlyOn_iUnion
isOpen_iUnion
tendstoLocallyUniformlyOn_iUnion πŸ“–mathematicalIsOpen
TendstoLocallyUniformlyOn
Set.iUnionβ€”IsOpen.tendstoLocallyUniformlyOn_iff_forall_tendsto
isOpen_iUnion
Set.mem_iUnion
tendstoLocallyUniformlyOn_iff_filter πŸ“–mathematicalβ€”TendstoLocallyUniformlyOn
TendstoUniformlyOnFilter
nhdsWithin
β€”Filter.eventually_of_mem
tendstoLocallyUniformlyOn_iff_forall_isCompact πŸ“–mathematicalIsOpenTendstoLocallyUniformlyOn
TendstoUniformlyOn
β€”List.TFAE.out
tendstoLocallyUniformlyOn_TFAE
tendstoLocallyUniformlyOn_iff_forall_tendsto πŸ“–mathematicalβ€”TendstoLocallyUniformlyOn
Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
nhdsWithin
uniformity
β€”forallβ‚‚_swap
tendstoLocallyUniformlyOn_iff_tendstoLocallyUniformly_comp_coe πŸ“–mathematicalβ€”TendstoLocallyUniformlyOn
TendstoLocallyUniformly
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Filter.prod_map_right
tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact πŸ“–mathematicalIsCompactTendstoLocallyUniformlyOn
TendstoUniformlyOn
β€”tendstoUniformlyOn_iff_tendstoUniformly_comp_coe
tendstoLocallyUniformly_iff_tendstoUniformly_of_compactSpace
isCompact_iff_compactSpace
tendstoLocallyUniformlyOn_iff_tendstoLocallyUniformly_comp_coe
TendstoUniformlyOn.tendstoLocallyUniformlyOn
tendstoLocallyUniformlyOn_of_forall_exists_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
TendstoUniformlyOn
TendstoLocallyUniformlyOnβ€”tendstoLocallyUniformlyOn_iff_forall_tendsto
Filter.Tendsto.mono_left
tendstoUniformlyOn_iff_tendsto
Filter.prod_mono_right
Filter.le_principal_iff
tendstoLocallyUniformlyOn_sUnion πŸ“–mathematicalIsOpen
TendstoLocallyUniformlyOn
Set.sUnionβ€”Set.sUnion_eq_biUnion
tendstoLocallyUniformlyOn_biUnion
tendstoLocallyUniformlyOn_univ πŸ“–mathematicalβ€”TendstoLocallyUniformlyOn
Set.univ
TendstoLocallyUniformly
β€”nhdsWithin_univ
tendstoLocallyUniformly_iff_filter πŸ“–mathematicalβ€”TendstoLocallyUniformly
TendstoUniformlyOnFilter
nhds
β€”tendstoLocallyUniformlyOn_iff_filter
tendstoLocallyUniformly_iff_forall_isCompact πŸ“–mathematicalβ€”TendstoLocallyUniformly
TendstoUniformlyOn
β€”tendstoLocallyUniformlyOn_iff_forall_isCompact
isOpen_univ
tendstoLocallyUniformly_iff_forall_tendsto πŸ“–mathematicalβ€”TendstoLocallyUniformly
Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
nhds
uniformity
β€”IsOpen.tendstoLocallyUniformlyOn_iff_forall_tendsto
isOpen_univ
tendstoLocallyUniformly_iff_tendstoUniformly_of_compactSpace πŸ“–mathematicalβ€”TendstoLocallyUniformly
TendstoUniformly
β€”IsCompact.elim_nhds_subcover'
isCompact_univ
Filter.Eventually.mono
Filter.eventually_all
Finite.of_fintype
Set.mem_univ
TendstoUniformly.tendstoLocallyUniformly
tendstoLocallyUniformly_of_forall_exists_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
TendstoUniformlyOn
TendstoLocallyUniformlyβ€”tendstoLocallyUniformlyOn_univ
tendstoLocallyUniformlyOn_of_forall_exists_nhds
nhdsWithin_univ

---

← Back to Index