Documentation Verification Report

Separation

πŸ“ Source: Mathlib/Topology/UniformSpace/Separation.lean

Statistics

MetricCount
DefinitionsinstUniformSpace, lift', map
3
Theoremsinseparable_iff_uniformity, specializes_iff_uniformity, inseparable_iff_uniformity, nhds_le_uniformity, comap_map_mk_uniformity, comap_mk_uniformity, lift'_mk, map_comp, map_id, map_mk, map_unique, uniformContinuous_dom, uniformContinuous_domβ‚‚, uniformContinuous_lift, uniformContinuous_lift', uniformContinuous_map, uniformContinuous_mk, uniformContinuous_uncurry_liftβ‚‚, uniformity_eq, completelyNormalSpace_of_hasAntitoneBasis, completelyNormalSpace_of_isCountablyGenerated_uniformity, to_regularSpace, eq_of_clusterPt_uniformity, eq_of_forall_symmetric, eq_of_uniformity, eq_of_uniformity_basis, inseparable_iff_clusterPt_uniformity, inseparable_iff_ker_uniformity, isClosed_of_spaced_out, isClosed_range_of_spaced_out, t0Space_iff_ker_uniformity, t0Space_iff_uniformity, t0Space_iff_uniformity'
33
Total36

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
inseparable_iff_uniformity πŸ“–mathematicalFilter.HasBasis
uniformity
Inseparable
UniformSpace.toTopologicalSpace
Set
Set.instMembership
β€”specializes_iff_inseparable
instR0Space
instR1Space
UniformSpace.to_regularSpace
specializes_iff_uniformity
specializes_iff_uniformity πŸ“–mathematicalFilter.HasBasis
uniformity
Specializes
UniformSpace.toTopologicalSpace
Set
Set.instMembership
β€”specializes_iff
nhds_basis_uniformity

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
inseparable_iff_uniformity πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
Inseparable
uniformity
β€”mono_right
prodMk_nhds
Inseparable.nhds_le_uniformity
inseparable_iff_clusterPt_uniformity
ClusterPt.mono
ClusterPt.of_le_nhds
Filter.map_neBot

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
nhds_le_uniformity πŸ“–mathematicalInseparable
UniformSpace.toTopologicalSpace
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
instTopologicalSpaceProd
uniformity
β€”prod
rfl
nhds_le_uniformity

SeparationQuotient

Definitions

NameCategoryTheorems
instUniformSpace πŸ“–CompOp
21 mathmath: uniformity_eq, uniformContinuous_mk, instIsUniformGroup, isUniformInducing_mk, outCLM_uniformContinuous, uniformContinuous_lift, uniformContinuous_lift', uniformContinuous_domβ‚‚, outCLM_isUniformEmbedding, completeSpace_iff, instIsUniformAddGroup, uniformContinuous_uncurry_liftβ‚‚, IsUltraUniformity.separationQuotient_iff, IsUltraUniformity.separationQuotient, UniformSpace.Completion.uniformContinuous_completionSeparationQuotientEquiv_symm, comap_mk_uniformity, uniformContinuous_map, instCompleteSpace, UniformSpace.Completion.uniformContinuous_completionSeparationQuotientEquiv, uniformContinuous_dom, outCLM_isUniformInducing
lift' πŸ“–CompOp
2 mathmath: uniformContinuous_lift', lift'_mk
map πŸ“–CompOp
5 mathmath: map_id, uniformContinuous_map, map_comp, map_unique, map_mk

Theorems

NameKindAssumesProvesValidatesDepends On
comap_map_mk_uniformity πŸ“–mathematicalβ€”Filter.comap
SeparationQuotient
UniformSpace.toTopologicalSpace
Filter.map
uniformity
β€”le_antisymm
Filter.HasBasis.le_basis_iff
Filter.HasBasis.comap
Filter.HasBasis.map
Filter.basis_sets
uniformity_hasBasis_open
Inseparable.mem_open_iff
Inseparable.prod
Filter.le_comap_map
comap_mk_uniformity πŸ“–mathematicalβ€”Filter.comap
SeparationQuotient
UniformSpace.toTopologicalSpace
uniformity
instUniformSpace
β€”comap_map_mk_uniformity
lift'_mk πŸ“–mathematicalUniformContinuouslift'
UniformSpace.toTopologicalSpace
β€”lift'.eq_1
map_comp πŸ“–mathematicalUniformContinuousSeparationQuotient
UniformSpace.toTopologicalSpace
map
β€”map_unique
UniformContinuous.comp
map_id πŸ“–mathematicalβ€”map
SeparationQuotient
UniformSpace.toTopologicalSpace
β€”map_unique
uniformContinuous_id
map_mk πŸ“–mathematicalUniformContinuousmap
UniformSpace.toTopologicalSpace
β€”map.eq_1
instT0Space
UniformContinuous.comp
map_unique πŸ“–mathematicalUniformContinuous
SeparationQuotient
UniformSpace.toTopologicalSpace
mapβ€”β€”
uniformContinuous_dom πŸ“–mathematicalβ€”UniformContinuous
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
β€”β€”
uniformContinuous_domβ‚‚ πŸ“–mathematicalβ€”UniformContinuous
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpaceProd
instUniformSpace
β€”uniformity_prod_eq_prod
Filter.prod_map_map_eq
uniformContinuous_lift πŸ“–mathematicalβ€”UniformContinuous
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
lift
β€”β€”
uniformContinuous_lift' πŸ“–mathematicalβ€”UniformContinuous
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
lift'
β€”lift'.eq_1
uniformContinuous_lift
uniformContinuous_of_const
uniformContinuous_map πŸ“–mathematicalβ€”UniformContinuous
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
map
β€”uniformContinuous_lift'
uniformContinuous_mk πŸ“–mathematicalβ€”UniformContinuous
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
β€”le_rfl
uniformContinuous_uncurry_liftβ‚‚ πŸ“–mathematicalβ€”UniformContinuous
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpaceProd
instUniformSpace
liftβ‚‚
β€”uniformContinuous_domβ‚‚
uniformity_eq πŸ“–mathematicalβ€”uniformity
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
Filter.map
β€”β€”

UniformSpace

Theorems

NameKindAssumesProvesValidatesDepends On
completelyNormalSpace_of_hasAntitoneBasis πŸ“–mathematicalFilter.HasAntitoneBasis
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
uniformity
CompletelyNormalSpace
toTopologicalSpace
β€”Disjoint.symm
mem_nhds_iff
nhds_le_nhdsSet
Filter.disjoint_principal_right
disjoint_nhdsSet_principal
comp_symm_mem_uniformity_sets
Filter.HasAntitoneBasis.mem_iff
Set.subset_compl_iff_disjoint_right
subset_trans
Set.instIsTransSubset
ball_mono
SetRel.comp_subset_comp
SetRel.inv_mono
SetRel.inv_eq_self
mem_nhdsSet_iff_forall
Filter.mem_of_superset
ball_mem_nhds
Filter.HasAntitoneBasis.mem
Set.subset_iUnion
Filter.disjoint_iff
Set.disjoint_iff
Disjoint.notMem_of_mem_left
mem_ball_comp
Filter.HasAntitoneBasis.antitone
le_total
completelyNormalSpace_of_isCountablyGenerated_uniformity πŸ“–mathematicalβ€”CompletelyNormalSpace
toTopologicalSpace
β€”has_seq_basis
completelyNormalSpace_of_hasAntitoneBasis
to_regularSpace πŸ“–mathematicalβ€”RegularSpace
toTopologicalSpace
β€”RegularSpace.of_hasBasis
nhds_basis_uniformity'
uniformity_hasBasis_closed
isClosed_ball

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_clusterPt_uniformity πŸ“–β€”β€”β€”β€”Inseparable.eq
inseparable_iff_clusterPt_uniformity
eq_of_forall_symmetric πŸ“–β€”Set
Set.instMembership
β€”β€”eq_of_uniformity_basis
UniformSpace.hasBasis_symmetric
eq_of_uniformity πŸ“–β€”Set
Set.instMembership
β€”β€”t0Space_iff_uniformity
eq_of_uniformity_basis πŸ“–β€”Filter.HasBasis
uniformity
Set
Set.instMembership
β€”β€”Inseparable.eq
Filter.HasBasis.inseparable_iff_uniformity
inseparable_iff_clusterPt_uniformity πŸ“–mathematicalβ€”Inseparable
UniformSpace.toTopologicalSpace
ClusterPt
instTopologicalSpaceProd
uniformity
β€”ClusterPt.of_nhds_le
Inseparable.nhds_le_uniformity
Filter.HasBasis.inseparable_iff_uniformity
uniformity_hasBasis_closed
ClusterPt.mono
Filter.le_principal_iff
inseparable_iff_ker_uniformity πŸ“–mathematicalβ€”Inseparable
UniformSpace.toTopologicalSpace
Set
Set.instMembership
Filter.ker
uniformity
β€”Filter.HasBasis.inseparable_iff_uniformity
Filter.basis_sets
isClosed_of_spaced_out πŸ“–mathematicalSet
Filter
Filter.instMembership
uniformity
Set.Pairwise
Set.instMembership
IsClosed
UniformSpace.toTopologicalSpace
β€”comp_symm_mem_uniformity_sets
isClosed_of_closure_subset
UniformSpace.mem_closure_iff_ball
eq_of_forall_symmetric
Filter.inter_mem
UniformSpace.ball_inter_right
UniformSpace.mem_comp_of_mem_ball
UniformSpace.ball_inter_left
isClosed_range_of_spaced_out πŸ“–mathematicalSet
Filter
Filter.instMembership
uniformity
Pairwise
Set.instMembership
IsClosed
UniformSpace.toTopologicalSpace
Set.range
β€”isClosed_of_spaced_out
t0Space_iff_ker_uniformity πŸ“–mathematicalβ€”T0Space
UniformSpace.toTopologicalSpace
Filter.ker
uniformity
Set.diagonal
β€”Set.instReflSubset
Set.instAntisymmSubset
refl_mem_uniformity
t0Space_iff_uniformity πŸ“–mathematicalβ€”T0Space
UniformSpace.toTopologicalSpace
β€”β€”
t0Space_iff_uniformity' πŸ“–mathematicalβ€”T0Space
UniformSpace.toTopologicalSpace
Pairwise
Set
Filter
Filter.instMembership
uniformity
Set.instMembership
β€”β€”

---

← Back to Index