Documentation Verification Report

Basic

📁 Source: Mathlib/Topology/UniformSpace/Ultra/Basic.lean

Statistics

MetricCount
DefinitionsIsTransitiveRel, IsUltraUniformity
2
Theoremscomp_eq_of_idRel_subset, comp_subset_self, iInter, inter, mem_filter_prod_comm, mem_filter_prod_trans, preimage_prodMap, prod_subset_trans, sInter, symmetrizeRel, hasBasis, mem_nhds_iff_symm_trans, mk_of_hasBasis, isTopologicalBasis_clopens, isClopen_ball_of_isSymm_of_isTrans_of_mem_uniformity, isClosed_ball_of_isSymm_of_isTrans_of_mem_uniformity, isClosed_ball_of_isSymmetricRel_of_isTransitiveRel_of_mem_uniformity, isOpen_ball_of_mem_uniformity, nhds_basis_clopens, ball_eq_of_mem, ball_subset_of_mem, isTransitiveRel_empty, isTransitiveRel_iff_comp_subset_self, isTransitiveRel_singleton, isTransitiveRel_univ
25
Total27

IsTransitiveRel

Theorems

NameKindAssumesProvesValidatesDepends On
comp_eq_of_idRel_subset 📖mathematicalIsTransitiveRel
Set
Set.instHasSubset
idRel
SetRel.comple_antisymm
comp_subset_self
subset_comp_self
comp_subset_self 📖mathematicalIsTransitiveRelSetRel
Set.instHasSubset
SetRel.comp
iInter 📖mathematicalIsTransitiveRelSet.iInter
inter 📖mathematicalIsTransitiveRelSetRel
Set.instInter
mem_filter_prod_comm 📖SetRel
Filter
Filter.instMembership
SProd.sprod
Filter.instSProd
mem_filter_prod_trans
mem_filter_prod_trans 📖SetRel
Filter
Filter.instMembership
SProd.sprod
Filter.instSProd
Filter.Eventually.trans_prod
SetRel.trans
preimage_prodMap 📖mathematicalIsTransitiveRelSet.preimage
prod_subset_trans 📖Set
Set.instHasSubset
SProd.sprod
Set.instSProd
Set.Nonempty
SetRel.trans
sInter 📖mathematicalIsTransitiveRelSet.sInterSet.sInter_eq_iInter
iInter
symmetrizeRel 📖mathematicalIsTransitiveRelSetRel.symmetrize

IsUltraUniformity

Theorems

NameKindAssumesProvesValidatesDepends On
hasBasis 📖mathematicalFilter.HasBasis
SetRel
uniformity
Filter
Filter.instMembership
SetRel.IsSymm
SetRel.IsTrans
mem_nhds_iff_symm_trans 📖mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
uniformity
SetRel.IsSymm
SetRel.IsTrans
Set.instHasSubset
UniformSpace.ball
UniformSpace.mem_nhds_iff
Filter.HasBasis.mem_iff'
hasBasis
HasSubset.Subset.trans
Set.instIsTransSubset
UniformSpace.ball_mono
mk_of_hasBasis 📖mathematicalFilter.HasBasis
uniformity
SetRel.IsSymm
SetRel.IsTrans
IsUltraUniformityFilter.HasBasis.to_hasBasis'
Filter.HasBasis.mem_of_mem
subset_rfl
Set.instReflSubset

TopologicalSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isTopologicalBasis_clopens 📖mathematicalIsTopologicalBasis
UniformSpace.toTopologicalSpace
setOf
Set
IsClopen
IsTopologicalBasis.of_hasBasis_nhds
UniformSpace.nhds_basis_clopens

UniformSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isClopen_ball_of_isSymm_of_isTrans_of_mem_uniformity 📖mathematicalSetRel
Filter
Filter.instMembership
uniformity
IsClopen
toTopologicalSpace
ball
isClosed_ball_of_isSymm_of_isTrans_of_mem_uniformity
isOpen_ball_of_mem_uniformity
isClosed_ball_of_isSymm_of_isTrans_of_mem_uniformity 📖mathematicalSetRel
Filter
Filter.instMembership
uniformity
IsClosed
toTopologicalSpace
ball
isOpen_compl_iff
isOpen_iff_ball_subset
SetRel.trans
SetRel.symm
isClosed_ball_of_isSymmetricRel_of_isTransitiveRel_of_mem_uniformity 📖mathematicalSetRel
Filter
Filter.instMembership
uniformity
IsClosed
toTopologicalSpace
ball
isClosed_ball_of_isSymm_of_isTrans_of_mem_uniformity
isOpen_ball_of_mem_uniformity 📖mathematicalSetRel
Filter
Filter.instMembership
uniformity
IsOpen
toTopologicalSpace
ball
isOpen_iff_ball_subset
ball_subset_of_mem
nhds_basis_clopens 📖mathematicalFilter.HasBasis
Set
nhds
toTopologicalSpace
Set.instMembership
IsClopen
Filter.HasBasis.to_hasBasis'
nhds_basis_uniformity'
IsUltraUniformity.hasBasis
mem_ball_self
isClopen_ball_of_isSymm_of_isTrans_of_mem_uniformity
le_rfl
IsOpen.mem_nhds_iff

(root)

Definitions

NameCategoryTheorems
IsTransitiveRel 📖MathDef
4 mathmath: isTransitiveRel_singleton, isTransitiveRel_iff_comp_subset_self, isTransitiveRel_univ, isTransitiveRel_empty
IsUltraUniformity 📖CompData
13 mathmath: IsUltraUniformity.bot, IsUltraUniformity.prod, IsUniformInducing.isUltraUniformity, IsUltraUniformity.completion, IsUltraUniformity.separationQuotient_iff, IsUltraUniformity.inf, IsUltraUniformity.separationQuotient, IsUltraUniformity.cauchyFilter, IsUltraUniformity.completion_iff, IsUltraUniformity.cauchyFilter_iff, IsUltraUniformity.mk_of_hasBasis, IsUltraUniformity.top, IsUltraUniformity.comap

Theorems

NameKindAssumesProvesValidatesDepends On
ball_eq_of_mem 📖Set
Set.instMembership
UniformSpace.ball
le_antisymm
ball_subset_of_mem
UniformSpace.mem_ball_symmetry
ball_subset_of_mem 📖mathematicalSet
Set.instMembership
UniformSpace.ball
Set.instHasSubsetUniformSpace.ball_subset_of_comp_subset
SetRel.comp_subset_self
isTransitiveRel_empty 📖mathematicalIsTransitiveRel
SetRel
Set.instEmptyCollection
isTransitiveRel_iff_comp_subset_self 📖mathematicalIsTransitiveRel
SetRel
Set.instHasSubset
SetRel.comp
IsTransitiveRel.comp_subset_self
isTransitiveRel_singleton 📖mathematicalIsTransitiveRel
SetRel
Set.instSingletonSet
isTransitiveRel_univ 📖mathematicalIsTransitiveRel
Set.univ

---

← Back to Index