Documentation Verification Report

Completion

📁 Source: Mathlib/Topology/UniformSpace/Ultra/Completion.lean

Statistics

MetricCount
DefinitionsCompletion, Completion
2
TheoremsisSymm_gen, isTrans_gen, cauchyFilter_gen, cauchyFilter_gen, cauchyFilter, cauchyFilter_iff, completion, completion_iff, separationQuotient, separationQuotient_iff, isUltraUniformity
11
Total13

AbsoluteValue

Definitions

NameCategoryTheorems
Completion 📖CompOp
2 mathmath: Completion.locallyCompactSpace, Completion.extensionEmbedding_dist_eq_of_comp

CauchyFilter

Theorems

NameKindAssumesProvesValidatesDepends On
isSymm_gen 📖mathematicalSetRel.IsSymm
CauchyFilter
gen
SetRel.mem_filter_prod_comm
isTrans_gen 📖mathematicalSetRel.IsTrans
CauchyFilter
gen
IsTransitiveRel.mem_filter_prod_trans
instNeBotValFilterCauchy

IsSymmetricRel

Theorems

NameKindAssumesProvesValidatesDepends On
cauchyFilter_gen 📖mathematicalSetRel.IsSymm
CauchyFilter
CauchyFilter.gen
CauchyFilter.isSymm_gen

IsTransitiveRel

Theorems

NameKindAssumesProvesValidatesDepends On
cauchyFilter_gen 📖mathematicalSetRel.IsTrans
CauchyFilter
CauchyFilter.gen
CauchyFilter.isTrans_gen

IsUltraUniformity

Theorems

NameKindAssumesProvesValidatesDepends On
cauchyFilter 📖mathematicalIsUltraUniformity
CauchyFilter
CauchyFilter.instUniformSpace
mk_of_hasBasis
CauchyFilter.basis_uniformity
hasBasis
CauchyFilter.isSymm_gen
CauchyFilter.isTrans_gen
cauchyFilter_iff 📖mathematicalIsUltraUniformity
CauchyFilter
CauchyFilter.instUniformSpace
IsUniformInducing.isUltraUniformity
CauchyFilter.isUniformInducing_pureCauchy
cauchyFilter
completion 📖mathematicalIsUltraUniformity
UniformSpace.Completion
UniformSpace.Completion.uniformSpace
completion_iff
completion_iff 📖mathematicalIsUltraUniformity
UniformSpace.Completion
UniformSpace.Completion.uniformSpace
cauchyFilter_iff
separationQuotient_iff
separationQuotient 📖mathematicalIsUltraUniformity
SeparationQuotient
UniformSpace.toTopologicalSpace
SeparationQuotient.instUniformSpace
Filter.HasBasis.map
hasBasis
mk_of_hasBasis
SeparationQuotient.uniformity_eq
SetRel.isSymm_image
Filter.mem_ker
inseparable_iff_ker_uniformity
SetRel.trans
separationQuotient_iff 📖mathematicalIsUltraUniformity
SeparationQuotient
UniformSpace.toTopologicalSpace
SeparationQuotient.instUniformSpace
IsUniformInducing.isUltraUniformity
separationQuotient

IsUniformInducing

Theorems

NameKindAssumesProvesValidatesDepends On
isUltraUniformity 📖mathematicalIsUniformInducingIsUltraUniformityIsUltraUniformity.comap
comap_uniformSpace

Valuation

Definitions

NameCategoryTheorems
Completion 📖CompOp
6 mathmath: Padic.withValUniformEquiv_norm_le_one_iff, IsEquiv.valuedCompletion_le_one_iff, Padic.toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, Padic.withValUniformEquiv_cast_apply, Padic.coe_withValRingEquiv, Padic.coe_withValRingEquiv_symm

---

← Back to Index