Documentation Verification Report

UniformConvergence

πŸ“ Source: Mathlib/Topology/UniformSpace/UniformConvergence.lean

Statistics

MetricCount
DefinitionsTendstoUniformly, TendstoUniformlyOn, TendstoUniformlyOnFilter, UniformCauchySeqOn, UniformCauchySeqOnFilter
5
TheoremstendstoUniformlyOnFilter_iff, tendstoUniformlyOnFilter_iff_of_uniformity, tendstoUniformlyOn_iff, tendstoUniformlyOn_iff_of_uniformity, tendstoUniformly_iff, tendstoUniformly_iff_of_uniformity, tendstoUniformlyOnFilter_const, tendstoUniformlyOn_const, comp, prodMap, prodMk, tendstoUniformlyOn, tendstoUniformlyOnFilter, tendsto_at, tendsto_of_eventually_tendsto, comp, congr_inseparable, congr_inseparable_right, congr_right, mono, prodMap, prodMk, seq_tendstoUniformlyOn, tendstoUniformlyOnFilter, tendsto_at, uniformCauchySeqOn, comp, congr_inseparable, mono_left, mono_right, prodMap, prodMk, tendstoUniformlyOn, tendsto_at, tendsto_of_eventually_tendsto, uniformCauchySeqOnFilter, cauchySeq, cauchy_map, comp, mono, prod, prod', prodMap, tendstoUniformlyOn_of_tendsto, uniformCauchySeqOnFilter, comp, mono_left, mono_right, tendstoUniformlyOnFilter_of_tendsto, comp_tendstoUniformly, comp_tendstoUniformlyOn, comp_tendstoUniformlyOnFilter, comp_uniformCauchySeqOn, tendstoUniformly, tendstoUniformlyOn, tendstoUniformly, tendstoUniformlyOnFilter_iff_tendsto, tendstoUniformlyOn_empty, tendstoUniformlyOn_iff_restrict, tendstoUniformlyOn_iff_seq_tendstoUniformlyOn, tendstoUniformlyOn_iff_tendsto, tendstoUniformlyOn_iff_tendstoUniformlyOnFilter, tendstoUniformlyOn_iff_tendstoUniformly_comp_coe, tendstoUniformlyOn_of_seq_tendstoUniformlyOn, tendstoUniformlyOn_singleton_iff_tendsto, tendstoUniformlyOn_univ, tendstoUniformly_congr, tendstoUniformly_congr_inseparable, tendstoUniformly_iff_seq_tendstoUniformly, tendstoUniformly_iff_tendsto, tendstoUniformly_iff_tendstoUniformlyOnFilter, tendsto_prod_filter_iff, tendsto_prod_principal_iff, tendsto_prod_top_iff, uniformCauchySeqOn_iff_uniformCauchySeqOnFilter
75
Total80

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoUniformlyOnFilter_iff πŸ“–mathematicalFilter.HasBasis
uniformity
TendstoUniformlyOnFilter
Set
Set.instMembership
β€”tendstoUniformlyOnFilter_iff_of_uniformity
eventually_iff
prod
tendstoUniformlyOnFilter_iff_of_uniformity πŸ“–mathematicalFilter.HasBasis
uniformity
TendstoUniformlyOnFilter
Filter.Eventually
Set
Set.instMembership
SProd.sprod
Filter
Filter.instSProd
β€”tendstoUniformlyOnFilter_iff_tendsto
tendsto_right_iff
tendstoUniformlyOn_iff πŸ“–mathematicalFilter.HasBasis
uniformity
TendstoUniformlyOn
Set
Set.instMembership
β€”tendstoUniformlyOn_iff_of_uniformity
eventually_iff
tendstoUniformlyOn_iff_of_uniformity πŸ“–mathematicalFilter.HasBasis
uniformity
TendstoUniformlyOn
Filter.Eventually
β€”tendsto_right_iff
tendstoUniformly_iff πŸ“–mathematicalFilter.HasBasis
uniformity
TendstoUniformly
Set
Set.instMembership
β€”tendstoUniformly_iff_of_uniformity
eventually_iff
tendstoUniformly_iff_of_uniformity πŸ“–mathematicalFilter.HasBasis
uniformity
TendstoUniformly
Filter.Eventually
β€”tendstoUniformlyOn_iff_of_uniformity

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoUniformlyOnFilter_const πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
TendstoUniformlyOnFilterβ€”nhds_eq_comap_uniformity
comp
Filter.tendsto_fst
tendstoUniformlyOn_const πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
TendstoUniformlyOnβ€”tendstoUniformlyOn_iff_tendstoUniformlyOnFilter
tendstoUniformlyOnFilter_const

TendstoUniformly

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”TendstoUniformlyβ€”β€”tendstoUniformly_iff_tendstoUniformlyOnFilter
Filter.comap_top
TendstoUniformlyOnFilter.comp
prodMap πŸ“–mathematicalTendstoUniformlyinstUniformSpaceProd
SProd.sprod
Filter
Filter.instSProd
β€”tendstoUniformlyOn_univ
Set.univ_prod_univ
TendstoUniformlyOn.prodMap
prodMk πŸ“–mathematicalTendstoUniformlyinstUniformSpaceProd
SProd.sprod
Filter
Filter.instSProd
β€”comp
prodMap
tendstoUniformlyOn πŸ“–mathematicalTendstoUniformlyTendstoUniformlyOnβ€”TendstoUniformlyOn.mono
tendstoUniformlyOn_univ
Set.subset_univ
tendstoUniformlyOnFilter πŸ“–mathematicalTendstoUniformlyTendstoUniformlyOnFilter
Top.top
Filter
Filter.instTop
β€”tendstoUniformly_iff_tendstoUniformlyOnFilter
tendsto_at πŸ“–mathematicalTendstoUniformlyFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
β€”TendstoUniformlyOnFilter.tendsto_at
tendstoUniformlyOnFilter
le_top
tendsto_of_eventually_tendsto πŸ“–β€”TendstoUniformly
Filter.Eventually
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
β€”β€”TendstoUniformlyOnFilter.tendsto_of_eventually_tendsto
TendstoUniformlyOnFilter.mono_right
tendstoUniformlyOnFilter
le_top

TendstoUniformlyOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalTendstoUniformlyOnSet.preimageβ€”tendstoUniformlyOn_iff_tendstoUniformlyOnFilter
Filter.comap_principal
TendstoUniformlyOnFilter.comp
congr_inseparable πŸ“–β€”TendstoUniformlyOn
Filter.Eventually
β€”β€”tendstoUniformlyOn_iff_tendstoUniformlyOnFilter
TendstoUniformlyOnFilter.congr_inseparable
Filter.eventually_prod_principal_iff
congr_inseparable_right πŸ“–β€”TendstoUniformlyOn
Inseparable
UniformSpace.toTopologicalSpace
β€”β€”tendstoUniformlyOn_iff_tendsto
Filter.HasBasis.tendsto_right_iff
uniformity_hasBasis_open
forallβ‚‚_imp
Filter.eventually_prod_principal_iff
Filter.Eventually.mono
Inseparable.mem_open_iff
Inseparable.prod
Inseparable.rfl
congr_right πŸ“–β€”TendstoUniformlyOn
Set.EqOn
β€”β€”congr_inseparable_right
Inseparable.of_eq
mono πŸ“–β€”TendstoUniformlyOn
Set
Set.instHasSubset
β€”β€”tendstoUniformlyOn_iff_tendstoUniformlyOnFilter
TendstoUniformlyOnFilter.mono_right
tendstoUniformlyOnFilter
Filter.le_principal_iff
Filter.mem_principal
prodMap πŸ“–mathematicalTendstoUniformlyOninstUniformSpaceProd
SProd.sprod
Filter
Filter.instSProd
Set
Set.instSProd
β€”tendstoUniformlyOn_iff_tendstoUniformlyOnFilter
Filter.prod_principal_principal
TendstoUniformlyOnFilter.prodMap
prodMk πŸ“–mathematicalTendstoUniformlyOninstUniformSpaceProd
SProd.sprod
Filter
Filter.instSProd
β€”Set.inter_self
comp
prodMap
seq_tendstoUniformlyOn πŸ“–β€”TendstoUniformlyOn
Filter.Tendsto
Filter.atTop
Nat.instPreorder
β€”β€”tendstoUniformlyOn_iff_tendsto
Filter.Tendsto.comp
Filter.Tendsto.prodMk
Filter.tendsto_fst
Filter.tendsto_snd
tendstoUniformlyOnFilter πŸ“–mathematicalTendstoUniformlyOnTendstoUniformlyOnFilter
Filter.principal
β€”tendstoUniformlyOn_iff_tendstoUniformlyOnFilter
tendsto_at πŸ“–mathematicalTendstoUniformlyOn
Set
Set.instMembership
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
β€”TendstoUniformlyOnFilter.tendsto_at
tendstoUniformlyOnFilter
Filter.le_principal_iff
Filter.mem_principal
Set.singleton_subset_iff
uniformCauchySeqOn πŸ“–mathematicalTendstoUniformlyOnUniformCauchySeqOnβ€”uniformCauchySeqOn_iff_uniformCauchySeqOnFilter
TendstoUniformlyOnFilter.uniformCauchySeqOnFilter
tendstoUniformlyOnFilter

TendstoUniformlyOnFilter

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalTendstoUniformlyOnFilterFilter.comapβ€”tendstoUniformlyOnFilter_iff_tendsto
Filter.Tendsto.comp
Filter.Tendsto.prodMap
Filter.tendsto_id
Filter.tendsto_comap
congr_inseparable πŸ“–β€”TendstoUniformlyOnFilter
Filter.Eventually
Inseparable
UniformSpace.toTopologicalSpace
SProd.sprod
Filter
Filter.instSProd
β€”β€”tendstoUniformlyOnFilter_iff_tendsto
Filter.HasBasis.tendsto_right_iff
uniformity_hasBasis_open
Filter.Eventually.congr
Filter.Eventually.mono
Inseparable.mem_open_iff
Inseparable.prod
Inseparable.rfl
mono_left πŸ“–β€”TendstoUniformlyOnFilter
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
β€”β€”Filter.Eventually.filter_mono
Filter.prod_mono_left
mono_right πŸ“–β€”TendstoUniformlyOnFilter
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
β€”β€”Filter.Eventually.filter_mono
Filter.prod_mono_right
prodMap πŸ“–mathematicalTendstoUniformlyOnFilterinstUniformSpaceProd
SProd.sprod
Filter
Filter.instSProd
β€”tendstoUniformlyOnFilter_iff_tendsto
uniformity_prod_eq_comap_prod
Filter.tendsto_comap_iff
Filter.map_swap4_prod
Filter.tendsto_map'_iff
Filter.Tendsto.prodMap
prodMk πŸ“–mathematicalTendstoUniformlyOnFilterinstUniformSpaceProd
SProd.sprod
Filter
Filter.instSProd
β€”Filter.Eventually.diag_of_prod_right
prodMap
tendstoUniformlyOn πŸ“–mathematicalTendstoUniformlyOnFilter
Filter.principal
TendstoUniformlyOnβ€”tendstoUniformlyOn_iff_tendstoUniformlyOnFilter
tendsto_at πŸ“–mathematicalTendstoUniformlyOnFilter
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.principal
Set
Set.instSingletonSet
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
β€”Uniform.tendsto_nhds_right
Filter.mem_map
Filter.mp_mem
Filter.Eventually.curry
Filter.univ_mem'
Filter.principal_singleton
Filter.Eventually.filter_mono
tendsto_of_eventually_tendsto πŸ“–β€”TendstoUniformlyOnFilter
Filter.Eventually
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
β€”β€”Uniform.tendsto_nhds_left
Filter.mem_map
Set.preimage.eq_1
Filter.eventually_iff
comp3_mem_uniformity
Filter.mp_mem
Filter.univ_mem'
Filter.Eventually.curry
Filter.Eventually.exists
Filter.Eventually.and
uniformCauchySeqOnFilter πŸ“–mathematicalTendstoUniformlyOnFilterUniformCauchySeqOnFilterβ€”comp_symm_of_uniformity
Filter.Tendsto.eventually
Filter.tendsto_swap4_prod
Filter.Eventually.mono
Filter.Eventually.diag_of_prod_right
SetRel.prodMk_mem_comp

UniformCauchySeqOn

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq πŸ“–mathematicalUniformCauchySeqOn
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Set
Set.instMembership
CauchySeqβ€”cauchy_map
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
cauchy_map πŸ“–mathematicalUniformCauchySeqOn
Set
Set.instMembership
Cauchy
Filter.map
β€”Filter.mem_map
Filter.mp_mem
Filter.univ_mem'
comp πŸ“–mathematicalUniformCauchySeqOnSet.preimageβ€”uniformCauchySeqOn_iff_uniformCauchySeqOnFilter
Filter.comap_principal
UniformCauchySeqOnFilter.comp
mono πŸ“–β€”UniformCauchySeqOn
Set
Set.instHasSubset
β€”β€”uniformCauchySeqOn_iff_uniformCauchySeqOnFilter
UniformCauchySeqOnFilter.mono_right
Filter.le_principal_iff
Filter.mem_principal
prod πŸ“–mathematicalUniformCauchySeqOninstUniformSpaceProd
SProd.sprod
Filter
Filter.instSProd
β€”Set.inter_self
comp
prodMap
prod' πŸ“–mathematicalUniformCauchySeqOninstUniformSpaceProdβ€”Filter.tendsto_diag
Filter.Tendsto.eventually
Filter.Tendsto.prodMap
prod
prodMap πŸ“–mathematicalUniformCauchySeqOninstUniformSpaceProd
SProd.sprod
Filter
Filter.instSProd
Set
Set.instSProd
β€”Filter.mem_prod_iff
Filter.mem_map
uniformity_prod_eq_prod
Filter.Eventually.mono
Filter.Tendsto.eventually
Filter.tendsto_swap4_prod
Set.image_subset_iff
Set.mk_mem_prod
tendstoUniformlyOn_of_tendsto πŸ“–mathematicalUniformCauchySeqOn
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
TendstoUniformlyOnβ€”tendstoUniformlyOn_iff_tendstoUniformlyOnFilter
UniformCauchySeqOnFilter.tendstoUniformlyOnFilter_of_tendsto
uniformCauchySeqOnFilter
uniformCauchySeqOnFilter πŸ“–mathematicalUniformCauchySeqOnUniformCauchySeqOnFilter
Filter.principal
β€”uniformCauchySeqOn_iff_uniformCauchySeqOnFilter

UniformCauchySeqOnFilter

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalUniformCauchySeqOnFilterFilter.comapβ€”Filter.eventually_prod_iff
Filter.eventually_comap
Filter.Eventually.mono
mono_left πŸ“–β€”UniformCauchySeqOnFilter
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
β€”β€”Filter.Eventually.filter_mono
Filter.prod_mono_left
Filter.prod_mono
mono_right πŸ“–β€”UniformCauchySeqOnFilter
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
β€”β€”Filter.Eventually.filter_mono
Filter.prod_mono_right
Filter.Eventually.mono
tendstoUniformlyOnFilter_of_tendsto πŸ“–mathematicalUniformCauchySeqOnFilter
Filter.Eventually
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
TendstoUniformlyOnFilterβ€”Filter.eq_or_neBot
Filter.bot_prod
comp_symm_of_uniformity
Filter.eventually_prod_iff
Filter.eventually_swap_iff
Filter.Tendsto.eventually
Filter.tendsto_prodAssoc
Filter.tendsto_prod_swap
Filter.Eventually.and
Filter.Eventually.mono
Filter.Eventually.curry
Set.mem_of_mem_of_subset
Uniform.tendsto_nhds_right
Filter.Eventually.exists

UniformContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
comp_tendstoUniformly πŸ“–β€”UniformContinuous
TendstoUniformly
β€”β€”β€”
comp_tendstoUniformlyOn πŸ“–β€”UniformContinuous
TendstoUniformlyOn
β€”β€”β€”
comp_tendstoUniformlyOnFilter πŸ“–β€”UniformContinuous
TendstoUniformlyOnFilter
β€”β€”β€”
comp_uniformCauchySeqOn πŸ“–β€”UniformContinuous
UniformCauchySeqOn
β€”β€”β€”

UniformContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoUniformly πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
UniformContinuousOn
instUniformSpaceProd
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
SProd.sprod
Set.instSProd
Set.univ
TendstoUniformlyβ€”nhdsWithin_eq_nhds
tendstoUniformlyOn
mem_of_mem_nhds
tendstoUniformlyOn πŸ“–mathematicalUniformContinuousOn
instUniformSpaceProd
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
SProd.sprod
Set
Set.instSProd
Set.instMembership
TendstoUniformlyOn
nhdsWithin
UniformSpace.toTopologicalSpace
β€”tendstoUniformlyOn_iff_tendsto
Filter.comap_inf
Filter.comap_principal
inf_assoc
Filter.inf_principal
Filter.Tendsto.comp
Filter.Tendsto.inf
nhds_eq_comap_uniformity
Filter.comap_comap
uniformity_prod_eq_comap_prod
Filter.Tendsto.prodMk
Filter.tendsto_comap
tendsto_diag_uniformity
Filter.tendsto_principal_principal

UniformContinuousβ‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoUniformly πŸ“–mathematicalUniformContinuousβ‚‚TendstoUniformly
nhds
UniformSpace.toTopologicalSpace
β€”UniformContinuousOn.tendstoUniformly
Filter.univ_mem
Set.univ_prod_univ
uniformContinuousOn_univ

(root)

Definitions

NameCategoryTheorems
TendstoUniformly πŸ“–MathDef
35 mathmath: tendstoUniformly_iff_tendstoUniformlyOnFilter, tendstoUniformly_iff_tendsto, HasSumUniformly.tendstoUniformlyOn_finsetRange, tendstoUniformlyOn_univ, tendstoUniformly_tsum_nat, tendstoUniformly_iff_seq_tendstoUniformly, tendstoUniformly_tsum_of_cofinite_eventually, hasSumUniformly_iff_tendstoUniformly, tendstoUniformly_congr_inseparable, EMetric.tendstoUniformly_iff, Antitone.tendstoUniformly_of_forall_tendsto, UniformFun.tendsto_iff_tendstoUniformly, UniformContinuousβ‚‚.tendstoUniformly, IsTopologicalGroup.tendstoUniformly_iff, Filter.HasBasis.tendstoUniformly_iff_of_uniformity, tendstoLocallyUniformly_iff_tendstoUniformly_of_compactSpace, HasSumUniformly.tendstoUniformly, Filter.HasBasis.tendstoUniformly_iff, ContinuousMap.tendsto_iff_tendstoUniformly, tendsto_prod_top_iff, hasProdUniformly_iff_tendstoUniformly, tendstoUniformlyOn_iff_restrict, ContinuousOn.tendstoUniformly, Continuous.tendstoUniformly, tendstoUniformlyOn_iff_tendstoUniformly_comp_coe, tendstoUniformly_congr, ZeroAtInftyContinuousMap.tendsto_iff_tendstoUniformly, Monotone.tendstoUniformly_of_forall_tendsto, tendstoUniformly_tsum, HasProdUniformly.tendstoUniformlyOn_finsetRange, HasProdUniformly.tendstoUniformly, UniformContinuousOn.tendstoUniformly, IsTopologicalAddGroup.tendstoUniformly_iff, BoundedContinuousFunction.tendsto_iff_tendstoUniformly, Metric.tendstoUniformly_iff
TendstoUniformlyOn πŸ“–MathDef
55 mathmath: MeasureTheory.Egorov.tendstoUniformlyOn_diff_iUnionNotConvergentSeq, Antitone.tendstoUniformlyOn_of_forall_tendsto, tendstoUniformlyOn_univ, Filter.Tendsto.tendstoUniformlyOn_const, tendstoUniformlyOn_iff_tendsto, tendstoLocallyUniformly_iff_forall_isCompact, tendstoUniformlyOn_iff_tendstoUniformlyOnFilter, UniformOnFun.tendsto_iff_tendstoUniformlyOn, tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact, SeminormedAddGroup.uniformCauchySeqOn_iff_tendstoUniformlyOn_zero, tendstoUniformlyOn_tsum, Monotone.tendstoUniformlyOn_of_forall_tendsto, IsTopologicalGroup.tendstoUniformlyOn_iff, tendstoUniformlyOn_singleton_iff_tendsto, tendstoUniformlyOn_tsum_nat, tendstoUniformlyOn_iff_seq_tendstoUniformlyOn, TendstoUniformly.tendstoUniformlyOn, SeminormedGroup.uniformCauchySeqOn_iff_tendstoUniformlyOn_one, Filter.HasBasis.tendstoUniformlyOn_iff_of_uniformity, HasFPowerSeriesOnBall.tendstoUniformlyOn, MeasureTheory.tendstoUniformlyOn_of_ae_tendsto', HasProdUniformlyOn.tendstoUniformlyOn_finsetRange, Metric.tendstoUniformlyOn_iff, ContinuousMap.tendsto_iff_forall_isCompact_tendstoUniformlyOn, HasFPowerSeriesOnBall.tendstoUniformlyOn', HasSumUniformlyOn.tendstoUniformlyOn_finsetRange, tendstoUniformlyOn_tsum_of_cofinite_eventually, Filter.HasBasis.tendstoUniformlyOn_iff, TendstoUniformlyOnFilter.tendstoUniformlyOn, tendstoUniformlyOn_iff_restrict, MeasureTheory.tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist', UniformCauchySeqOn.tendstoUniformlyOn_of_tendsto, tendstoUniformlyOn_empty, HasFPowerSeriesWithinOnBall.tendstoUniformlyOn, tendstoLocallyUniformlyOn_iff_forall_isCompact, tendstoUniformlyOn_iff_tendstoUniformly_comp_coe, MeasureTheory.tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist, HasFPowerSeriesWithinOnBall.tendstoUniformlyOn', EMetric.tendstoUniformlyOn_iff, UniformConvergenceCLM.tendsto_iff_tendstoUniformlyOn, ContinuousOn.tendsto_restrict_iff_tendstoUniformlyOn, hasProdUniformlyOn_iff_tendstoUniformlyOn, UniformContinuousOn.tendstoUniformlyOn, HasProdUniformlyOn.tendstoUniformlyOn, hasSumUniformlyOn_iff_tendstoUniformlyOn, Complex.exists_cthickening_tendstoUniformlyOn, IsTopologicalAddGroup.tendstoUniformlyOn_iff, HasSumUniformlyOn.tendstoUniformlyOn, Complex.tendstoUniformlyOn_deriv_of_cthickening_subset, SeminormedAddGroup.tendstoUniformlyOn_zero, tendstoUniformlyOn_tsum_nat_eventually, Summable.tendstoUniformlyOn_tsum_nat_log_one_add, tendsto_prod_principal_iff, MeasureTheory.tendstoUniformlyOn_of_ae_tendsto, SeminormedGroup.tendstoUniformlyOn_one
TendstoUniformlyOnFilter πŸ“–MathDef
15 mathmath: tendstoUniformly_iff_tendstoUniformlyOnFilter, SeminormedGroup.uniformCauchySeqOnFilter_iff_tendstoUniformlyOnFilter_one, Filter.HasBasis.tendstoUniformlyOnFilter_iff, Filter.Tendsto.tendstoUniformlyOnFilter_const, tendstoUniformlyOn_iff_tendstoUniformlyOnFilter, tendsto_prod_filter_iff, SeminormedAddGroup.uniformCauchySeqOnFilter_iff_tendstoUniformlyOnFilter_zero, UniformCauchySeqOnFilter.tendstoUniformlyOnFilter_of_tendsto, tendstoUniformlyOnFilter_iff_tendsto, TendstoUniformly.tendstoUniformlyOnFilter, Metric.tendstoUniformlyOnFilter_iff, Filter.HasBasis.tendstoUniformlyOnFilter_iff_of_uniformity, tendstoLocallyUniformlyOn_iff_filter, tendstoLocallyUniformly_iff_filter, TendstoUniformlyOn.tendstoUniformlyOnFilter
UniformCauchySeqOn πŸ“–MathDef
5 mathmath: TendstoUniformlyOn.uniformCauchySeqOn, uniformCauchySeqOn_iff_uniformCauchySeqOnFilter, SeminormedAddGroup.uniformCauchySeqOn_iff_tendstoUniformlyOn_zero, SeminormedGroup.uniformCauchySeqOn_iff_tendstoUniformlyOn_one, Metric.uniformCauchySeqOn_iff
UniformCauchySeqOnFilter πŸ“–MathDef
5 mathmath: SeminormedGroup.uniformCauchySeqOnFilter_iff_tendstoUniformlyOnFilter_one, uniformCauchySeqOn_iff_uniformCauchySeqOnFilter, SeminormedAddGroup.uniformCauchySeqOnFilter_iff_tendstoUniformlyOnFilter_zero, UniformCauchySeqOn.uniformCauchySeqOnFilter, TendstoUniformlyOnFilter.uniformCauchySeqOnFilter

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoUniformlyOnFilter_iff_tendsto πŸ“–mathematicalβ€”TendstoUniformlyOnFilter
Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
uniformity
β€”β€”
tendstoUniformlyOn_empty πŸ“–mathematicalβ€”TendstoUniformlyOn
Set
Set.instEmptyCollection
β€”instIsEmptyFalse
tendstoUniformlyOn_iff_restrict πŸ“–mathematicalβ€”TendstoUniformlyOn
TendstoUniformly
Set.Elem
Set.restrict
β€”tendstoUniformlyOn_iff_tendstoUniformly_comp_coe
tendstoUniformlyOn_iff_seq_tendstoUniformlyOn πŸ“–mathematicalβ€”TendstoUniformlyOn
Filter.atTop
Nat.instPreorder
β€”TendstoUniformlyOn.seq_tendstoUniformlyOn
tendstoUniformlyOn_of_seq_tendstoUniformlyOn
tendstoUniformlyOn_iff_tendsto πŸ“–mathematicalβ€”TendstoUniformlyOn
Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
Filter.principal
uniformity
β€”β€”
tendstoUniformlyOn_iff_tendstoUniformlyOnFilter πŸ“–mathematicalβ€”TendstoUniformlyOn
TendstoUniformlyOnFilter
Filter.principal
β€”β€”
tendstoUniformlyOn_iff_tendstoUniformly_comp_coe πŸ“–mathematicalβ€”TendstoUniformlyOn
TendstoUniformly
Set.Elem
Set
Set.instMembership
β€”β€”
tendstoUniformlyOn_of_seq_tendstoUniformlyOn πŸ“–β€”TendstoUniformlyOn
Filter.atTop
Nat.instPreorder
β€”β€”tendstoUniformlyOn_iff_tendsto
Filter.tendsto_iff_seq_tendsto
Filter.prod.isCountablyGenerated
Filter.isCountablyGenerated_principal
Filter.Tendsto.comp
Filter.tendsto_prod_iff'
Filter.Tendsto.prodMk
Filter.tendsto_id
tendstoUniformlyOn_singleton_iff_tendsto πŸ“–mathematicalβ€”TendstoUniformlyOn
Set
Set.instSingletonSet
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
β€”Filter.principal_singleton
Filter.prod_pure
tendstoUniformlyOn_univ πŸ“–mathematicalβ€”TendstoUniformlyOn
Set.univ
TendstoUniformly
β€”β€”
tendstoUniformly_congr πŸ“–mathematicalFilter.EventuallyEqTendstoUniformlyβ€”tendstoUniformly_congr_inseparable
Filter.Eventually.mono
Inseparable.of_eq
tendstoUniformly_congr_inseparable πŸ“–mathematicalFilter.EventuallyTendstoUniformlyβ€”tendstoUniformlyOn_univ
TendstoUniformlyOn.congr_inseparable
Filter.Eventually.mono
Inseparable.symm
tendstoUniformly_iff_seq_tendstoUniformly πŸ“–mathematicalβ€”TendstoUniformly
Filter.atTop
Nat.instPreorder
β€”tendstoUniformlyOn_iff_seq_tendstoUniformlyOn
tendstoUniformly_iff_tendsto πŸ“–mathematicalβ€”TendstoUniformly
Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
Top.top
Filter.instTop
uniformity
β€”β€”
tendstoUniformly_iff_tendstoUniformlyOnFilter πŸ“–mathematicalβ€”TendstoUniformly
TendstoUniformlyOnFilter
Top.top
Filter
Filter.instTop
β€”tendstoUniformlyOn_univ
tendstoUniformlyOn_iff_tendstoUniformlyOnFilter
Filter.principal_univ
tendsto_prod_filter_iff πŸ“–mathematicalβ€”Filter.Tendsto
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
SProd.sprod
Filter
Filter.instSProd
nhds
UniformSpace.toTopologicalSpace
TendstoUniformlyOnFilter
β€”nhds_eq_comap_uniformity
tendsto_prod_principal_iff πŸ“–mathematicalβ€”Filter.Tendsto
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
SProd.sprod
Filter
Filter.instSProd
Filter.principal
nhds
UniformSpace.toTopologicalSpace
TendstoUniformlyOn
β€”tendstoUniformlyOn_iff_tendstoUniformlyOnFilter
tendsto_prod_filter_iff
tendsto_prod_top_iff πŸ“–mathematicalβ€”Filter.Tendsto
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
SProd.sprod
Filter
Filter.instSProd
Top.top
Filter.instTop
nhds
UniformSpace.toTopologicalSpace
TendstoUniformly
β€”tendstoUniformly_iff_tendstoUniformlyOnFilter
tendsto_prod_filter_iff
uniformCauchySeqOn_iff_uniformCauchySeqOnFilter πŸ“–mathematicalβ€”UniformCauchySeqOn
UniformCauchySeqOnFilter
Filter.principal
β€”Filter.eventually_prod_principal_iff

---

← Back to Index