Documentation Verification Report

UniformConvergenceTopology

πŸ“ Source: Mathlib/Topology/UniformSpace/UniformConvergenceTopology.lean

Statistics

MetricCount
DefinitionsΒ«term_β†’α΅€[_]_Β», Β«term_β†’α΅€_Β», UniformFun, basis, congrLeft, congrRight, filter, gen, ofFun, phi, toFun, topologicalSpace, uniformCore, uniformEquivPiComm, uniformEquivProdArrow, uniformSpace, UniformOnFun, congrLeft, congrRight, gen, ofFun, toFun, topologicalSpace, uniformEquivPiComm, uniformEquivProdArrow, uniformEquivUniformFun, uniformSpace
27
Theoremscomp_tendstoUniformly, comp_tendstoUniformlyOn_eventually, comp_tendstoUniformly_eventually, comap_eq, gc, hasBasis_nhds, hasBasis_nhds_of_basis, hasBasis_uniformity, hasBasis_uniformity_of_basis, iInf_eq, inf_eq, instCompleteSpace, instT2Space, isBasis_gen, isClosed_setOf_continuous, mem_gen, mono, ofFun_toFun, postcomp_isUniformEmbedding, postcomp_isUniformInducing, postcomp_uniformContinuous, precomp_uniformContinuous, tendsto_iff_tendstoUniformly, toFun_ofFun, uniformContinuous_eval, uniformContinuous_toFun, uniformSpace_eq_iInf_precomp_of_cover, uniformSpace_eq_inf_precomp_of_cover, comap_eq, continuousAt_evalβ‚‚, continuousOn_evalβ‚‚, continuous_rng_iff, gen_eq_preimage_restrict, gen_mem_nhds, gen_mem_uniformity, gen_mono, hasAntitoneBasis_uniformity, hasBasis_nhds, hasBasis_nhds_of_basis, hasBasis_uniformity, hasBasis_uniformity_of_basis, hasBasis_uniformity_of_basis_aux₁, hasBasis_uniformity_of_basis_auxβ‚‚, hasBasis_uniformity_of_covering_of_basis, iInf_eq, inf_eq, instCompleteSpace, isBasis_gen, isClosed_setOf_continuous, isCountablyGenerated_uniformity, isEmbedding_toFun_finite, isUniformEmbedding_toFun_finite, isUniformInducing_pi_restrict, mono, nhds_eq, nhds_eq_of_basis, ofFun_toFun, postcomp_isUniformEmbedding, postcomp_isUniformInducing, postcomp_uniformContinuous, precomp_uniformContinuous, t2Space_of_covering, tendsto_iff_tendstoUniformlyOn, toFun_ofFun, topologicalSpace_eq, uniformContinuous_eval, uniformContinuous_eval_of_mem, uniformContinuous_eval_of_mem_sUnion, uniformContinuous_ofFun_toFun, uniformContinuous_ofUniformFun, uniformContinuous_restrict, uniformContinuous_restrict_toFun, uniformContinuous_toFun, uniformSpace_eq_iInf_precomp_of_cover, uniformSpace_eq_inf_precomp_of_cover, uniformity_eq, uniformity_eq_of_basis, instNonemptyUniformFun, instNonemptyUniformOnFun, instSubsingletonUniformFun, instSubsingletonUniformOnFun
81
Total108

UniformContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp_tendstoUniformly πŸ“–β€”Set
Set.instMembership
UniformContinuousOn
TendstoUniformly
β€”β€”CanLift.prf
Pi.canLift
Subtype.canLift
Filter.Tendsto.of_tendsto_comp
tendstoUniformly_iff_tendsto
Eq.le
IsUniformInducing.comap_uniformity
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_subtype_val
UniformContinuous.comp_tendstoUniformly
uniformContinuousOn_iff_restrict
comp_tendstoUniformlyOn_eventually πŸ“–β€”Filter.Eventually
Set
Set.instMembership
UniformContinuousOn
TendstoUniformlyOn
β€”β€”tendstoUniformlyOn_iff_restrict
comp_tendstoUniformly_eventually
comp_tendstoUniformly_eventually πŸ“–β€”Filter.Eventually
Set
Set.instMembership
UniformContinuousOn
TendstoUniformly
β€”β€”Filter.eventually_iff_exists_mem
Filter.eventuallyEq_iff_exists_mem
tendstoUniformly_congr
comp_tendstoUniformly

UniformConvergence

Definitions

NameCategoryTheorems
Β«term_β†’α΅€[_]_Β» πŸ“–CompOpβ€”
Β«term_β†’α΅€_Β» πŸ“–CompOpβ€”

UniformFun

Definitions

NameCategoryTheorems
basis πŸ“–CompOpβ€”
congrLeft πŸ“–CompOpβ€”
congrRight πŸ“–CompOpβ€”
filter πŸ“–CompOp
1 mathmath: gc
gen πŸ“–CompOp
7 mathmath: UniformOnFun.gen_eq_preimage_restrict, hasBasis_uniformity, hasBasis_uniformity_of_basis, mem_gen, isBasis_gen, hasBasis_nhds_of_basis, hasBasis_nhds
ofFun πŸ“–CompOp
44 mathmath: Equicontinuous.inducing_uniformFun_iff_pi, ofFun_one, UniformOnFun.isometry_restrict, uniformSpace_eq_iInf_precomp_of_cover, toFun_ofFun, BoundedContinuousFunction.isEmbedding_coeFn, Equicontinuous.tendsto_uniformFun_iff_pi, equicontinuousWithinAt_iff_continuousWithinAt, postcomp_isUniformInducing, isometry_ofFun_continuousMap, equicontinuousOn_iff_continuousOn, UniformOnFun.continuous_rng_iff, isometry_ofFun_boundedContinuousFunction, ofFun_zero, ofFun_div, UniformOnFun.topologicalSpace_eq, lipschitzWith_ofFun_iff, equicontinuous_iff_continuous, ContinuousMap.continuous_iff_continuous_uniformFun, ofFun_smul, precomp_uniformContinuous, Equicontinuous.isUniformInducing_uniformFun_iff_pi, ofFun_prod, postcomp_uniformContinuous, ofFun_neg, UniformOnFun.uniformContinuous_restrict, UniformOnFun.edist_eq_pi_restrict, uniformEquicontinuousOn_iff_uniformContinuousOn, ContinuousMap.isUniformEmbedding_uniformFunOfFun, lipschitzOnWith_ofFun_iff, ofFun_sub, equicontinuousAt_iff_continuousAt, UniformOnFun.edist_eq_restrict_sUnion, ofFun_sum, ofFun_add, ofFun_toFun, UniformOnFun.isUniformInducing_pi_restrict, uniformSpace_eq_inf_precomp_of_cover, postcomp_isUniformEmbedding, UniformOnFun.lipschitzWith_restrict, ofFun_mul, uniformEquicontinuous_iff_uniformContinuous, BoundedContinuousFunction.isInducing_coeFn, ofFun_inv
phi πŸ“–CompOp
1 mathmath: gc
toFun πŸ“–CompOp
35 mathmath: UniformOnFun.gen_eq_preimage_restrict, edist_eval_le, UniformOnFun.uniformContinuous_ofUniformFun, uniformSpace_eq_iInf_precomp_of_cover, toFun_sub, UniformOnFun.lipschitzWith_one_ofFun_toFun, toFun_ofFun, postcomp_isUniformInducing, toFun_zero, tendsto_iff_tendstoUniformly, toFun_smul, edist_le, toFun_one, toFun_prod, toFun_div, dist_le, precomp_uniformContinuous, postcomp_uniformContinuous, edist_def, lipschitzWith_iff, mem_gen, toFun_neg, toFun_add, uniformContinuous_eval, uniformContinuous_toFun, toFun_inv, toFun_sum, ofFun_toFun, uniformSpace_eq_inf_precomp_of_cover, dist_def, toFun_mul, postcomp_isUniformEmbedding, lipschitzOnWith_iff, isClosed_setOf_continuous, lipschitzWith_eval
topologicalSpace πŸ“–CompOp
20 mathmath: Equicontinuous.inducing_uniformFun_iff_pi, BoundedContinuousFunction.isEmbedding_coeFn, hasBasis_nhds_zero_of_basis, Equicontinuous.tendsto_uniformFun_iff_pi, equicontinuousWithinAt_iff_continuousWithinAt, hasBasis_nhds_zero, instT2Space, tendsto_iff_tendstoUniformly, equicontinuousOn_iff_continuousOn, UniformOnFun.continuous_rng_iff, UniformOnFun.topologicalSpace_eq, hasBasis_nhds_one_of_basis, equicontinuous_iff_continuous, ContinuousMap.continuous_iff_continuous_uniformFun, hasBasis_nhds_one, equicontinuousAt_iff_continuousAt, hasBasis_nhds_of_basis, hasBasis_nhds, isClosed_setOf_continuous, BoundedContinuousFunction.isInducing_coeFn
uniformCore πŸ“–CompOpβ€”
uniformEquivPiComm πŸ“–CompOpβ€”
uniformEquivProdArrow πŸ“–CompOpβ€”
uniformSpace πŸ“–CompOp
28 mathmath: UniformOnFun.uniformContinuous_ofUniformFun, uniformSpace_eq_iInf_precomp_of_cover, instIsUniformAddGroupUniformFun, mono, hasBasis_uniformity, postcomp_isUniformInducing, instCompleteSpace, Equicontinuous.comap_uniformFun_eq, hasBasis_uniformity_of_basis, precomp_uniformContinuous, Equicontinuous.isUniformInducing_uniformFun_iff_pi, postcomp_uniformContinuous, UniformOnFun.uniformContinuous_restrict, uniformEquicontinuousOn_iff_uniformContinuousOn, ContinuousMap.isUniformEmbedding_uniformFunOfFun, instIsUniformGroupUniformFun, uniformContinuous_eval, uniformContinuous_toFun, uniformContinuousConstSMul, comap_eq, iInf_eq, UniformOnFun.isUniformInducing_pi_restrict, UniformOnFun.hasBasis_uniformity_of_basis_aux₁, uniformSpace_eq_inf_precomp_of_cover, postcomp_isUniformEmbedding, UniformOnFun.hasBasis_uniformity_of_basis_auxβ‚‚, inf_eq, uniformEquicontinuous_iff_uniformContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
comap_eq πŸ“–mathematicalβ€”uniformSpace
UniformSpace.comap
β€”IsUniformInducing.comap_uniformSpace
postcomp_isUniformInducing
gc πŸ“–mathematicalβ€”GaloisConnection
Filter
UniformFun
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.map
phi
SProd.sprod
Filter.instSProd
Top.top
Filter.instTop
filter
β€”filter.eq_1
FilterBasis.generate
Filter.le_generate_iff
Set.image_subset_iff
Filter.mem_prod_top
hasBasis_nhds πŸ“–mathematicalβ€”Filter.HasBasis
UniformFun
Set
nhds
topologicalSpace
Filter
Filter.instMembership
uniformity
setOf
Set.instMembership
gen
β€”hasBasis_nhds_of_basis
Filter.basis_sets
hasBasis_nhds_of_basis πŸ“–mathematicalFilter.HasBasis
uniformity
UniformFun
nhds
topologicalSpace
setOf
Set
Set.instMembership
gen
β€”nhds_basis_uniformity'
hasBasis_uniformity_of_basis
hasBasis_uniformity πŸ“–mathematicalβ€”Filter.HasBasis
UniformFun
Set
uniformity
uniformSpace
Filter
Filter.instMembership
gen
β€”Filter.IsBasis.hasBasis
isBasis_gen
hasBasis_uniformity_of_basis πŸ“–mathematicalFilter.HasBasis
uniformity
UniformFun
uniformSpace
Set
gen
β€”Filter.HasBasis.to_hasBasis
hasBasis_uniformity
Filter.HasBasis.mem_iff
Filter.HasBasis.mem_of_mem
subset_rfl
Set.instReflSubset
iInf_eq πŸ“–mathematicalβ€”uniformSpace
iInf
UniformSpace
instInfSetUniformSpace
UniformFun
β€”UniformSpace.ext
iInf_uniformity
GaloisConnection.u_iInf
gc
inf_eq πŸ“–mathematicalβ€”uniformSpace
UniformSpace
instMinUniformSpace
UniformFun
β€”inf_eq_iInf
iInf_eq
iInf_congr
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
UniformFun
uniformSpace
β€”UniformEquiv.completeSpace_iff
Set.mem_singleton
UniformOnFun.instCompleteSpace
instT2Space πŸ“–mathematicalβ€”T2Space
UniformFun
topologicalSpace
β€”T2Space.of_injective_continuous
Pi.t2Space
Equiv.injective
UniformContinuous.continuous
uniformContinuous_toFun
isBasis_gen πŸ“–mathematicalβ€”Filter.IsBasis
UniformFun
Set
Filter
Filter.instMembership
gen
β€”Filter.univ_mem
Filter.inter_mem
isClosed_setOf_continuous πŸ“–mathematicalβ€”IsClosed
UniformFun
topologicalSpace
setOf
Continuous
UniformSpace.toTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”isClosed_iff_forall_filter
TendstoUniformly.continuous
tendsto_iff_tendstoUniformly
Filter.tendsto_id'
Filter.Eventually.frequently
Filter.le_principal_iff
mem_gen πŸ“–mathematicalβ€”UniformFun
Set
Set.instMembership
gen
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”β€”
mono πŸ“–mathematicalβ€”Monotone
UniformSpace
UniformFun
PartialOrder.toPreorder
instPartialOrderUniformSpace
uniformSpace
β€”GaloisConnection.monotone_u
gc
ofFun_toFun πŸ“–mathematicalβ€”DFunLike.coe
Equiv
UniformFun
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”β€”
postcomp_isUniformEmbedding πŸ“–mathematicalIsUniformEmbeddingUniformFun
uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”postcomp_isUniformInducing
IsUniformEmbedding.isUniformInducing
IsUniformEmbedding.injective
postcomp_isUniformInducing πŸ“–mathematicalIsUniformInducingUniformFun
uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”Filter.HasBasis.eq_of_same_basis
Filter.HasBasis.comap
hasBasis_uniformity
hasBasis_uniformity_of_basis
IsUniformInducing.basis_uniformity
Filter.basis_sets
postcomp_uniformContinuous πŸ“–mathematicalUniformContinuousUniformFun
uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”uniformContinuous_iff
mono
comap_eq
precomp_uniformContinuous πŸ“–mathematicalβ€”UniformContinuous
UniformFun
uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”UniformContinuous.eq_1
Filter.HasBasis.tendsto_iff
hasBasis_uniformity
tendsto_iff_tendstoUniformly πŸ“–mathematicalβ€”Filter.Tendsto
UniformFun
nhds
topologicalSpace
TendstoUniformly
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”Filter.HasBasis.tendsto_right_iff
hasBasis_nhds
TendstoUniformly.eq_1
toFun_ofFun πŸ“–mathematicalβ€”DFunLike.coe
Equiv
UniformFun
EquivLike.toFunLike
Equiv.instEquivLike
toFun
ofFun
β€”β€”
uniformContinuous_eval πŸ“–mathematicalβ€”UniformContinuous
UniformFun
uniformSpace
Function.eval
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”Filter.map_le_iff_le_comap
Filter.HasBasis.le_basis_iff
hasBasis_uniformity
Filter.HasBasis.comap
Filter.basis_sets
uniformContinuous_toFun πŸ“–mathematicalβ€”UniformContinuous
UniformFun
uniformSpace
Pi.uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”uniformContinuous_pi
uniformContinuous_eval
uniformSpace_eq_iInf_precomp_of_cover πŸ“–mathematicalSet.Finite
Set.iUnion
Set
Set.instMembership
Set.range
Set.univ
uniformSpace
iInf
UniformSpace
UniformFun
instInfSetUniformSpace
UniformSpace.comap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”UniformSpace.ext
iInf_uniformity
le_antisymm
le_iInf
Filter.tendsto_iff_comap
precomp_uniformContinuous
Filter.HasBasis.le_basis_iff
Filter.HasBasis.iInf
Filter.HasBasis.comap
hasBasis_uniformity
Set.mem_iUnionβ‚‚
Eq.ge
Set.mem_univ
Set.mem_iInter
uniformSpace_eq_inf_precomp_of_cover πŸ“–mathematicalSet
Set.instUnion
Set.range
Set.univ
uniformSpace
UniformSpace
UniformFun
instMinUniformSpace
UniformSpace.comap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”UniformSpace.ext
le_antisymm
le_inf
Filter.tendsto_iff_comap
precomp_uniformContinuous
Filter.HasBasis.le_basis_iff
Filter.HasBasis.inf
Filter.HasBasis.comap
hasBasis_uniformity
Eq.ge
Set.mem_univ

UniformOnFun

Definitions

NameCategoryTheorems
congrLeft πŸ“–CompOpβ€”
congrRight πŸ“–CompOpβ€”
gen πŸ“–CompOp
13 mathmath: gen_eq_preimage_restrict, hasBasis_uniformity_of_covering_of_basis, uniformity_eq_of_basis, gen_mono, gen_mem_uniformity, hasBasis_nhds_of_basis, hasBasis_uniformity_of_basis, hasBasis_nhds, hasBasis_uniformity_of_basis_aux₁, hasAntitoneBasis_uniformity, uniformity_eq, hasBasis_uniformity, isBasis_gen
ofFun πŸ“–CompOp
38 mathmath: UniformConvergenceCLM.isEmbedding_coeFn, EquicontinuousOn.tendsto_uniformOnFun_iff_pi', uniformContinuous_ofUniformFun, ofFun_sum, ofFun_toFun, toFun_ofFun, lipschitzWith_one_ofFun_toFun, EquicontinuousOn.tendsto_uniformOnFun_iff_pi, ContinuousMap.continuous_iff_continuous_uniformOnFun, EquicontinuousOn.inducing_uniformOnFun_iff_pi', ofFun_div, postcomp_uniformContinuous, ofFun_inv, one_apply, postcomp_isUniformInducing, UniformConvergenceCLM.topologicalSpace_eq, EquicontinuousOn.isClosed_range_uniformOnFun_iff_pi, uniformSpace_eq_iInf_precomp_of_cover, ofFun_sub, UniformConvergenceCLM.isUniformInducing_coeFn, ContinuousOn.continuous_restrict_iff_continuous_uniformOnFun, EquicontinuousOn.isUniformInducing_uniformOnFun_iff_pi, ofFun_prod, precomp_uniformContinuous, UniformConvergenceCLM.uniformSpace_eq, ofFun_mul, uniformSpace_eq_inf_precomp_of_cover, postcomp_isUniformEmbedding, ContinuousLinearMap.isUniformEmbedding_toUniformOnFun, EquicontinuousOn.isInducing_uniformOnFun_iff_pi, ofFun_add, uniformContinuous_ofFun_toFun, ofFun_smul, UniformConvergenceCLM.isUniformEmbedding_coeFn, ofFun_neg, zero_apply, EquicontinuousOn.isUniformInducing_uniformOnFun_iff_pi', lipschitzWith_one_ofFun_toFun'
toFun πŸ“–CompOp
57 mathmath: toFun_one, uniformContinuous_eval, ofFun_toFun, isometry_restrict, toFun_ofFun, toFun_neg, isEmbedding_toFun_finite, toFun_div, postcomp_uniformContinuous, lipschitzOnWith_cfc_fun_of_subset, continuousOn_cfc_setProd, tendsto_iff_tendstoUniformlyOn, ContinuousMultilinearMap.range_toUniformOnFun, edist_eval_le, postcomp_isUniformInducing, lipschitzWith_iff, lipschitzOnWith_cfc_fun, continuous_rng_iff, topologicalSpace_eq, uniformSpace_eq_iInf_precomp_of_cover, lipschitzOnWith_cfcβ‚™_fun, lipschitzWith_eval, ContinuousMap.toUniformOnFun_toFun, uniformContinuous_toFun, continuousOn_evalβ‚‚, edist_def', lipschitzOnWith_iff, uniformContinuous_restrict, edist_eq_pi_restrict, edist_def, lipschitzOnWith_cfcβ‚™_fun_of_subset, toFun_sum, uniformContinuous_restrict_toFun, precomp_uniformContinuous, uniformContinuous_eval_of_mem_sUnion, toFun_sub, isClosed_setOf_continuous, continuousOn_cfcβ‚™_setProd, ContinuousMultilinearMap.toUniformOnFun_toFun, toFun_add, toFun_inv, uniformSpace_eq_inf_precomp_of_cover, edist_eq_restrict_sUnion, toFun_mul, isUniformEmbedding_toFun_finite, postcomp_isUniformEmbedding, continuousOn_cfc_nnreal_setProd, isUniformInducing_pi_restrict, uniformContinuous_ofFun_toFun, edist_le, uniformContinuous_eval_of_mem, toFun_smul, toFun_prod, continuousOn_cfcβ‚™_nnreal_setProd, lipschitzWith_restrict, toFun_zero, lipschitzWith_one_ofFun_toFun'
topologicalSpace πŸ“–CompOp
35 mathmath: UniformConvergenceCLM.isEmbedding_coeFn, EquicontinuousOn.tendsto_uniformOnFun_iff_pi', EquicontinuousOn.tendsto_uniformOnFun_iff_pi, ContinuousMap.continuous_iff_continuous_uniformOnFun, isEmbedding_toFun_finite, nhds_eq_of_basis, EquicontinuousOn.inducing_uniformOnFun_iff_pi', continuousOn_cfc_setProd, tendsto_iff_tendstoUniformlyOn, continuous_rng_iff, UniformConvergenceCLM.topologicalSpace_eq, EquicontinuousOn.isClosed_range_uniformOnFun_iff_pi, topologicalSpace_eq, t2Space_of_covering, continuousOn_evalβ‚‚, ContinuousMultilinearMap.isEmbedding_toUniformOnFun, ContinuousOn.continuous_restrict_iff_continuous_uniformOnFun, hasBasis_nhds_one_of_basis, hasBasis_nhds_zero_of_basis, eVariationOn.lowerSemicontinuous_uniformOn, hasBasis_nhds_of_basis, gen_mem_nhds, isClosed_setOf_continuous, continuousOn_cfcβ‚™_setProd, hasBasis_nhds_zero, hasBasis_nhds_one, continuousAt_evalβ‚‚, continuousOn_cfc_nnreal_setProd, hasBasis_nhds, EquicontinuousOn.isInducing_uniformOnFun_iff_pi, continuousSMul_submodule_of_image_bounded, continuous_of_forall_lipschitzWith, nhds_eq, continuousOn_cfcβ‚™_nnreal_setProd, eVariationOn.lowerSemicontinuous
uniformEquivPiComm πŸ“–CompOpβ€”
uniformEquivProdArrow πŸ“–CompOpβ€”
uniformEquivUniformFun πŸ“–CompOpβ€”
uniformSpace πŸ“–CompOp
42 mathmath: hasBasis_uniformity_of_covering_of_basis, uniformContinuous_ofUniformFun, mono, uniformContinuous_eval, uniformity_eq_of_basis, postcomp_uniformContinuous, isCountablyGenerated_uniformity, instIsUniformGroupUniformOnFun, postcomp_isUniformInducing, instCompleteSpace, ContinuousMultilinearMap.isUniformEmbedding_toUniformOnFun, uniformSpace_eq_iInf_precomp_of_cover, uniformContinuous_toFun, EquicontinuousOn.comap_uniformOnFun_eq, UniformFunOn.uniformContinuousConstSMul, UniformConvergenceCLM.isUniformInducing_coeFn, instIsUniformAddGroupUniformOnFun, uniformContinuous_restrict, EquicontinuousOn.isUniformInducing_uniformOnFun_iff_pi, gen_mem_uniformity, ContinuousMap.isUniformEmbedding_toUniformOnFunIsCompact, uniformContinuous_restrict_toFun, precomp_uniformContinuous, hasBasis_uniformity_of_basis, uniformContinuous_eval_of_mem_sUnion, UniformConvergenceCLM.uniformSpace_eq, inf_eq, uniformSpace_eq_inf_precomp_of_cover, isUniformEmbedding_toFun_finite, postcomp_isUniformEmbedding, ContinuousLinearMap.isUniformEmbedding_toUniformOnFun, isUniformInducing_pi_restrict, uniformContinuous_ofFun_toFun, uniformContinuous_eval_of_mem, hasAntitoneBasis_uniformity, UniformConvergenceCLM.isUniformEmbedding_coeFn, uniformity_eq, ContinuousMultilinearMap.isUniformInducing_toUniformOnFun, comap_eq, hasBasis_uniformity, EquicontinuousOn.isUniformInducing_uniformOnFun_iff_pi', iInf_eq

Theorems

NameKindAssumesProvesValidatesDepends On
comap_eq πŸ“–mathematicalβ€”uniformSpace
UniformSpace.comap
β€”UniformSpace.comap_iInf
iInf_congr_Prop
UniformFun.comap_eq
continuousAt_evalβ‚‚ πŸ“–mathematicalSet
Set.instMembership
Filter
Filter.instMembership
nhds
ContinuousAt
UniformSpace.toTopologicalSpace
DFunLike.coe
Equiv
UniformOnFun
EquivLike.toFunLike
Equiv.instEquivLike
toFun
instTopologicalSpaceProd
topologicalSpace
β€”ContinuousAt.eq_1
nhds_eq_comap_uniformity
Filter.tendsto_comap_iff
lift'_comp_uniformity
Filter.tendsto_lift'
Filter.mp_mem
prod_mem_nhds
gen_mem_nhds
Filter.inter_mem
UniformSpace.ball_mem_nhds
Filter.univ_mem'
continuousOn_evalβ‚‚ πŸ“–mathematicalSet
Set.instMembership
Filter
Filter.instMembership
nhds
ContinuousOn
UniformOnFun
instTopologicalSpaceProd
topologicalSpace
UniformSpace.toTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
setOf
ContinuousAt
β€”ContinuousAt.continuousWithinAt
continuousAt_evalβ‚‚
continuous_rng_iff πŸ“–mathematicalβ€”Continuous
UniformOnFun
topologicalSpace
UniformFun
Set.Elem
UniformFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
Set.restrict
toFun
β€”forall_swap
gen_eq_preimage_restrict πŸ“–mathematicalβ€”gen
Set.preimage
UniformFun
Set.restrict
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.toFun
UniformFun.gen
Set.Elem
β€”Set.ext
gen_mem_nhds πŸ“–mathematicalSet
Set.instMembership
Filter
Filter.instMembership
uniformity
UniformOnFun
nhds
topologicalSpace
setOf
β€”nhds_eq
Filter.mem_iInf_of_mem
Filter.mem_principal_self
gen_mem_uniformity πŸ“–mathematicalSet
Set.instMembership
Filter
Filter.instMembership
uniformity
UniformOnFun
uniformSpace
gen
β€”uniformity_eq
Filter.mem_iInf_of_mem
Filter.mem_principal_self
gen_mono πŸ“–mathematicalSet
Set.instHasSubset
UniformOnFun
gen
β€”β€”
hasAntitoneBasis_uniformity πŸ“–mathematicalSet
Set.instMembership
Monotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instHasSubset
Filter.HasAntitoneBasis
uniformity
UniformOnFun
uniformSpace
gen
β€”Filter.HasBasis.nonempty
Filter.HasAntitoneBasis.toHasBasis
Filter.HasBasis.to_hasBasis
hasBasis_uniformity_of_covering_of_basis
Monotone.directed_le
directed_of
gen_mono
Filter.HasAntitoneBasis.antitone
Set.Subset.rfl
hasBasis_nhds πŸ“–mathematicalSet.Nonempty
Set
DirectedOn
Set.instHasSubset
Filter.HasBasis
UniformOnFun
nhds
topologicalSpace
Set.instMembership
Filter
Filter.instMembership
uniformity
setOf
gen
β€”hasBasis_nhds_of_basis
Filter.basis_sets
hasBasis_nhds_of_basis πŸ“–mathematicalSet.Nonempty
Set
DirectedOn
Set.instHasSubset
Filter.HasBasis
uniformity
UniformOnFun
nhds
topologicalSpace
Set.instMembership
setOf
gen
β€”nhds_basis_uniformity
hasBasis_uniformity_of_basis
hasBasis_uniformity πŸ“–mathematicalSet.Nonempty
Set
DirectedOn
Set.instHasSubset
Filter.HasBasis
UniformOnFun
uniformity
uniformSpace
Set.instMembership
Filter
Filter.instMembership
gen
β€”hasBasis_uniformity_of_basis
Filter.basis_sets
hasBasis_uniformity_of_basis πŸ“–mathematicalSet.Nonempty
Set
DirectedOn
Set.instHasSubset
Filter.HasBasis
uniformity
UniformOnFun
uniformSpace
Set.instMembership
gen
β€”iInf_uniformity
Filter.hasBasis_biInf_of_directed
hasBasis_uniformity_of_basis_aux₁
hasBasis_uniformity_of_basis_auxβ‚‚
hasBasis_uniformity_of_basis_aux₁ πŸ“–mathematicalFilter.HasBasis
uniformity
UniformOnFun
UniformSpace.comap
Set.restrict
UniformFun.uniformSpace
Set.Elem
gen
β€”gen_eq_preimage_restrict
Filter.HasBasis.comap
UniformFun.hasBasis_uniformity_of_basis
hasBasis_uniformity_of_basis_auxβ‚‚ πŸ“–mathematicalDirectedOn
Set
Set.instHasSubset
Filter.HasBasis
uniformity
Order.Preimage
UniformSpace
UniformSpace.comap
Set.restrict
UniformFun.uniformSpace
Set.Elem
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderUniformSpace
β€”DirectedOn.mono
Filter.HasBasis.le_basis_iff
hasBasis_uniformity_of_basis_aux₁
gen_mono
subset_rfl
Set.instReflSubset
hasBasis_uniformity_of_covering_of_basis πŸ“–mathematicalSet
Set.instMembership
Directed
Set.instHasSubset
Filter.HasBasis
uniformity
UniformOnFun
uniformSpace
gen
β€”Set.Nonempty.mono
Set.range_subset_iff
Set.range_nonempty
HasSubset.Subset.trans
Set.instIsTransSubset
Filter.HasBasis.to_hasBasis
hasBasis_uniformity_of_basis
gen_mono
Set.Subset.rfl
iInf_eq πŸ“–mathematicalβ€”uniformSpace
iInf
UniformSpace
instInfSetUniformSpace
UniformOnFun
β€”iInf_congr_Prop
UniformFun.iInf_eq
UniformSpace.comap_iInf
iInf_comm
iInf_congr
inf_eq πŸ“–mathematicalβ€”uniformSpace
UniformSpace
instMinUniformSpace
UniformOnFun
β€”inf_eq_iInf
iInf_eq
iInf_congr
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
UniformOnFun
uniformSpace
β€”isEmpty_or_nonempty
complete_of_compact
Finite.compactSpace
Finite.of_subsingleton
instSubsingletonUniformOnFun
IsEmpty.instSubsingleton
CompleteSpace.complete
Cauchy.map
uniformContinuous_eval_of_mem_sUnion
nhds_eq_of_basis
uniformity_hasBasis_closed
cauchy_iff
gen_mem_uniformity
Filter.mp_mem
Filter.univ_mem'
IsClosed.mem_of_tendsto
Filter.Tendsto.prodMk_nhds
tendsto_const_nhds
Set.mk_mem_prod
Function.sometimes_spec
isBasis_gen πŸ“–mathematicalSet.Nonempty
Set
DirectedOn
Set.instHasSubset
Filter.IsBasis
UniformOnFun
Set.instMembership
FilterBasis
instMembershipSetFilterBasis
gen
β€”Set.Nonempty.prod
FilterBasis.nonempty
FilterBasis.inter_sets
isClosed_setOf_continuous πŸ“–mathematicalTopology.IsCoherentWithIsClosed
UniformOnFun
topologicalSpace
setOf
Continuous
UniformSpace.toTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”isClosed_iff_forall_filter
Topology.IsCoherentWith.continuous_iff
TendstoUniformlyOn.continuousOn
tendsto_iff_tendstoUniformlyOn
Filter.tendsto_id'
Filter.Eventually.frequently
Continuous.continuousOn
isCountablyGenerated_uniformity πŸ“–mathematicalSet
Set.instMembership
Monotone
Nat.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instHasSubset
Filter.IsCountablyGenerated
UniformOnFun
uniformity
uniformSpace
β€”Filter.exists_antitone_basis
Filter.HasBasis.isCountablyGenerated
instCountableNat
Filter.HasAntitoneBasis.toHasBasis
hasAntitoneBasis_uniformity
SemilatticeSup.instIsDirectedOrder
isEmbedding_toFun_finite πŸ“–mathematicalβ€”Topology.IsEmbedding
UniformOnFun
setOf
Set
Set.Finite
topologicalSpace
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”IsUniformEmbedding.isEmbedding
isUniformEmbedding_toFun_finite
isUniformEmbedding_toFun_finite πŸ“–mathematicalβ€”IsUniformEmbedding
UniformOnFun
setOf
Set
Set.Finite
uniformSpace
Pi.uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”Pi.uniformity
Filter.comap_iInf
Filter.comap_comap
Filter.HasBasis.ext
Filter.HasBasis.iInf'
Filter.HasBasis.comap
Filter.basis_sets
hasBasis_uniformity
Set.finite_empty
directedOn_of_sup_mem
Set.Finite.union
Filter.biInter_mem
Set.mem_iInterβ‚‚
isUniformInducing_pi_restrict πŸ“–mathematicalβ€”IsUniformInducing
UniformOnFun
uniformSpace
Pi.uniformSpace
Set.Elem
Set
UniformFun
Set.instMembership
UniformFun.uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
Set.restrict
toFun
β€”Pi.uniformSpace_eq
UniformSpace.comap_iInf
iInf_subtype
iInf_congr_Prop
mono πŸ“–mathematicalUniformSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderUniformSpace
Set
Set.instHasSubset
UniformOnFun
uniformSpace
β€”iInf_le_iInf_of_subset
iInfβ‚‚_mono
UniformSpace.comap_mono
UniformFun.mono
nhds_eq πŸ“–mathematicalβ€”nhds
UniformOnFun
topologicalSpace
iInf
Filter
Set
Filter.instInfSet
Set.instMembership
Filter.instMembership
uniformity
Filter.principal
setOf
β€”nhds_eq_of_basis
Filter.basis_sets
nhds_eq_of_basis πŸ“–mathematicalFilter.HasBasis
uniformity
nhds
UniformOnFun
topologicalSpace
iInf
Filter
Set
Filter.instInfSet
Set.instMembership
Filter.principal
setOf
β€”nhds_eq_comap_uniformity
uniformity_eq_of_basis
Filter.comap_iInf
iInf_congr_Prop
Filter.comap_principal
ofFun_toFun πŸ“–mathematicalβ€”DFunLike.coe
Equiv
UniformOnFun
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”β€”
postcomp_isUniformEmbedding πŸ“–mathematicalIsUniformEmbeddingUniformOnFun
uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”postcomp_isUniformInducing
IsUniformEmbedding.isUniformInducing
IsUniformEmbedding.injective
postcomp_isUniformInducing πŸ“–mathematicalIsUniformInducingUniformOnFun
uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”IsUniformInducing.comap_uniformity
uniformity_comap
UniformSpace.ext
comap_eq
postcomp_uniformContinuous πŸ“–mathematicalUniformContinuousUniformOnFun
uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”uniformContinuous_iff
LE.le.trans_eq
mono
subset_rfl
Set.instReflSubset
comap_eq
precomp_uniformContinuous πŸ“–mathematicalSet.MapsTo
Set
Set.image
UniformContinuous
UniformOnFun
uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”uniformity_eq
Filter.tendsto_iInf'
Set.forall_mem_image
t2Space_of_covering πŸ“–mathematicalSet.sUnion
Set.univ
T2Space
UniformOnFun
topologicalSpace
β€”Set.mem_sUnion
separated_by_continuous
UniformContinuous.continuous
uniformContinuous_eval_of_mem
tendsto_iff_tendstoUniformlyOn πŸ“–mathematicalβ€”Filter.Tendsto
UniformOnFun
nhds
topologicalSpace
TendstoUniformlyOn
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”nhds_eq
toFun_ofFun πŸ“–mathematicalβ€”DFunLike.coe
Equiv
UniformOnFun
EquivLike.toFunLike
Equiv.instEquivLike
toFun
ofFun
β€”β€”
topologicalSpace_eq πŸ“–mathematicalβ€”topologicalSpace
iInf
TopologicalSpace
UniformOnFun
Set
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Set.instMembership
TopologicalSpace.induced
UniformFun
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
Set.restrict
toFun
UniformFun.topologicalSpace
β€”UniformSpace.toTopologicalSpace_iInf
uniformContinuous_eval πŸ“–mathematicalSet.sUnion
Set.univ
UniformContinuous
UniformOnFun
uniformSpace
Function.eval
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”uniformContinuous_eval_of_mem_sUnion
Set.mem_univ
uniformContinuous_eval_of_mem πŸ“–mathematicalSet
Set.instMembership
UniformContinuous
UniformOnFun
uniformSpace
Function.eval
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”UniformContinuous.comp
UniformFun.uniformContinuous_eval
uniformContinuous_restrict
uniformContinuous_eval_of_mem_sUnion πŸ“–mathematicalSet
Set.instMembership
Set.sUnion
UniformContinuous
UniformOnFun
uniformSpace
Function.eval
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”uniformContinuous_eval_of_mem
uniformContinuous_ofFun_toFun πŸ“–mathematicalSet
Set.instHasSubset
Set.Finite
Set.sUnion
UniformContinuous
UniformOnFun
uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”uniformity_eq
iInfβ‚‚_comm
Filter.tendsto_iInf_iInf
Set.mem_sUnion
Set.iInter_congr_Prop
uniformContinuous_ofUniformFun πŸ“–mathematicalβ€”UniformContinuous
UniformFun
UniformOnFun
UniformFun.uniformSpace
uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
UniformFun.toFun
β€”uniformity_eq
Filter.HasBasis.eventually_iff
UniformFun.hasBasis_uniformity
uniformContinuous_restrict πŸ“–mathematicalSet
Set.instMembership
UniformContinuous
UniformOnFun
UniformFun
Set.Elem
uniformSpace
UniformFun.uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
Set.restrict
toFun
β€”iInf_uniformity
iInfβ‚‚_le
uniformContinuous_restrict_toFun πŸ“–mathematicalβ€”UniformContinuous
UniformOnFun
uniformSpace
Pi.uniformSpace
Set.Elem
Set.sUnion
Set.restrict
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”uniformContinuous_pi
Set.mem_sUnion
uniformContinuous_eval_of_mem
uniformContinuous_toFun πŸ“–mathematicalSet.sUnion
Set.univ
UniformContinuous
UniformOnFun
uniformSpace
Pi.uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toFun
β€”uniformContinuous_pi
uniformContinuous_eval
uniformSpace_eq_iInf_precomp_of_cover πŸ“–mathematicalSet.MapsTo
Set
Set.image
Set.preimage
Set.Finite
Set.instHasSubset
Set.iUnion
Set.instMembership
Set.range
uniformSpace
iInf
UniformSpace
UniformOnFun
instInfSetUniformSpace
UniformSpace.comap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”UniformFun.uniformSpace_eq_iInf_precomp_of_cover
Set.iUnion_congr_Prop
Set.range_restrictPreimage
Set.image_univ
Subtype.range_val
le_antisymm
le_iInf
uniformContinuous_iff
precomp_uniformContinuous
le_iInfβ‚‚
UniformSpace.comap_iInf
iInf_congr_Prop
iInf_mono
iInfβ‚‚_le_of_le
le_rfl
uniformSpace_eq_inf_precomp_of_cover πŸ“–mathematicalSet.MapsTo
Set
Set.image
Set.preimage
Set.instHasSubset
Set.instUnion
Set.range
uniformSpace
UniformSpace
UniformOnFun
instMinUniformSpace
UniformSpace.comap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofFun
toFun
β€”UniformFun.uniformSpace_eq_inf_precomp_of_cover
Set.range_restrictPreimage
Set.image_univ
Subtype.range_val
le_antisymm
le_inf
uniformContinuous_iff
precomp_uniformContinuous
le_iInfβ‚‚
UniformSpace.comap_iInf
UniformSpace.comap_inf
iInf_congr_Prop
inf_le_inf
iInfβ‚‚_le_of_le
le_rfl
uniformity_eq πŸ“–mathematicalβ€”uniformity
UniformOnFun
uniformSpace
iInf
Filter
Set
Filter.instInfSet
Set.instMembership
Filter.instMembership
Filter.principal
gen
β€”uniformity_eq_of_basis
Filter.basis_sets
uniformity_eq_of_basis πŸ“–mathematicalFilter.HasBasis
uniformity
UniformOnFun
uniformSpace
iInf
Filter
Set
Filter.instInfSet
Set.instMembership
Filter.principal
gen
β€”iInf_uniformity
iInf_congr_Prop
Filter.HasBasis.eq_biInf
UniformFun.hasBasis_uniformity_of_basis
Filter.comap_iInf
Filter.comap_principal

(root)

Definitions

NameCategoryTheorems
UniformFun πŸ“–CompOp
94 mathmath: Equicontinuous.inducing_uniformFun_iff_pi, UniformOnFun.gen_eq_preimage_restrict, UniformFun.ofFun_one, UniformFun.edist_eval_le, UniformOnFun.uniformContinuous_ofUniformFun, UniformOnFun.isometry_restrict, UniformFun.uniformSpace_eq_iInf_precomp_of_cover, UniformFun.toFun_sub, UniformOnFun.lipschitzWith_one_ofFun_toFun, UniformFun.toFun_ofFun, instIsUniformAddGroupUniformFun, BoundedContinuousFunction.isEmbedding_coeFn, UniformFun.mono, UniformFun.hasBasis_nhds_zero_of_basis, UniformFun.hasBasis_uniformity, Equicontinuous.tendsto_uniformFun_iff_pi, equicontinuousWithinAt_iff_continuousWithinAt, UniformFun.postcomp_isUniformInducing, UniformFun.hasBasis_nhds_zero, UniformFun.toFun_zero, UniformFun.instT2Space, UniformFun.instCompleteSpace, UniformFun.isometry_ofFun_continuousMap, UniformFun.tendsto_iff_tendstoUniformly, instNonemptyUniformFun, equicontinuousOn_iff_continuousOn, instIsScalarTowerUniformFun, UniformOnFun.continuous_rng_iff, UniformFun.isometry_ofFun_boundedContinuousFunction, UniformFun.toFun_smul, UniformFun.ofFun_zero, UniformFun.ofFun_div, UniformFun.instBoundedSpace, UniformFun.edist_le, instSMulCommClassUniformFun, UniformOnFun.topologicalSpace_eq, UniformFun.toFun_one, UniformFun.hasBasis_nhds_one_of_basis, UniformFun.lipschitzWith_ofFun_iff, UniformFun.toFun_prod, equicontinuous_iff_continuous, ContinuousMap.continuous_iff_continuous_uniformFun, UniformFun.hasBasis_uniformity_of_basis, UniformFun.toFun_div, UniformFun.dist_le, UniformFun.ofFun_smul, UniformFun.precomp_uniformContinuous, Equicontinuous.isUniformInducing_uniformFun_iff_pi, UniformFun.ofFun_prod, UniformFun.postcomp_uniformContinuous, UniformFun.edist_def, UniformFun.ofFun_neg, UniformOnFun.uniformContinuous_restrict, UniformFun.hasBasis_nhds_one, UniformOnFun.edist_eq_pi_restrict, uniformEquicontinuousOn_iff_uniformContinuousOn, UniformFun.lipschitzWith_iff, UniformFun.mem_gen, UniformFun.toFun_neg, ContinuousMap.isUniformEmbedding_uniformFunOfFun, UniformFun.isBasis_gen, instIsUniformGroupUniformFun, UniformFun.toFun_add, UniformFun.uniformContinuous_eval, UniformFun.lipschitzOnWith_ofFun_iff, UniformFun.ofFun_sub, equicontinuousAt_iff_continuousAt, UniformOnFun.edist_eq_restrict_sUnion, UniformFun.uniformContinuous_toFun, UniformFun.toFun_inv, UniformFun.uniformContinuousConstSMul, UniformFun.ofFun_sum, UniformFun.toFun_sum, UniformFun.ofFun_add, UniformFun.ofFun_toFun, UniformFun.iInf_eq, UniformOnFun.isUniformInducing_pi_restrict, UniformFun.uniformSpace_eq_inf_precomp_of_cover, UniformFun.dist_def, UniformFun.gc, UniformFun.toFun_mul, UniformFun.postcomp_isUniformEmbedding, UniformFun.lipschitzOnWith_iff, UniformOnFun.lipschitzWith_restrict, instSubsingletonUniformFun, UniformFun.hasBasis_nhds_of_basis, UniformFun.inf_eq, UniformFun.ofFun_mul, UniformFun.hasBasis_nhds, uniformEquicontinuous_iff_uniformContinuous, UniformFun.isClosed_setOf_continuous, BoundedContinuousFunction.isInducing_coeFn, UniformFun.ofFun_inv, UniformFun.lipschitzWith_eval
UniformOnFun πŸ“–CompOp
126 mathmath: UniformConvergenceCLM.isEmbedding_coeFn, UniformOnFun.toFun_one, UniformOnFun.instBoundedSpace, EquicontinuousOn.tendsto_uniformOnFun_iff_pi', UniformOnFun.hasBasis_uniformity_of_covering_of_basis, UniformOnFun.uniformContinuous_ofUniformFun, UniformOnFun.mono, UniformOnFun.ofFun_sum, UniformOnFun.uniformContinuous_eval, UniformOnFun.ofFun_toFun, UniformOnFun.uniformity_eq_of_basis, UniformOnFun.isometry_restrict, UniformOnFun.gen_mono, UniformOnFun.toFun_ofFun, UniformOnFun.toFun_neg, UniformOnFun.lipschitzWith_one_ofFun_toFun, EquicontinuousOn.tendsto_uniformOnFun_iff_pi, ContinuousMap.continuous_iff_continuous_uniformOnFun, UniformOnFun.isEmbedding_toFun_finite, UniformOnFun.nhds_eq_of_basis, UniformOnFun.toFun_div, EquicontinuousOn.inducing_uniformOnFun_iff_pi', UniformOnFun.ofFun_div, UniformOnFun.postcomp_uniformContinuous, instSubsingletonUniformOnFun, UniformOnFun.ofFun_inv, lipschitzOnWith_cfc_fun_of_subset, continuousOn_cfc_setProd, UniformOnFun.tendsto_iff_tendstoUniformlyOn, UniformOnFun.isCountablyGenerated_uniformity, instIsUniformGroupUniformOnFun, ContinuousMultilinearMap.range_toUniformOnFun, UniformOnFun.one_apply, UniformOnFun.edist_eval_le, UniformOnFun.postcomp_isUniformInducing, instSMulCommClassUniformOnFun, UniformOnFun.instCompleteSpace, instIsScalarTowerUniformOnFun, UniformOnFun.lipschitzWith_iff, lipschitzOnWith_cfc_fun, UniformOnFun.continuous_rng_iff, UniformConvergenceCLM.topologicalSpace_eq, EquicontinuousOn.isClosed_range_uniformOnFun_iff_pi, ContinuousMultilinearMap.isUniformEmbedding_toUniformOnFun, UniformOnFun.topologicalSpace_eq, UniformOnFun.t2Space_of_covering, UniformOnFun.uniformSpace_eq_iInf_precomp_of_cover, UniformOnFun.ofFun_sub, lipschitzOnWith_cfcβ‚™_fun, instNonemptyUniformOnFun, UniformOnFun.lipschitzWith_eval, ContinuousMap.toUniformOnFun_toFun, UniformOnFun.uniformContinuous_toFun, UniformOnFun.continuousOn_evalβ‚‚, ContinuousMultilinearMap.isEmbedding_toUniformOnFun, UniformOnFun.edist_def', UniformFunOn.uniformContinuousConstSMul, UniformConvergenceCLM.isUniformInducing_coeFn, ContinuousOn.continuous_restrict_iff_continuous_uniformOnFun, instIsUniformAddGroupUniformOnFun, UniformOnFun.lipschitzOnWith_iff, UniformOnFun.hasBasis_nhds_one_of_basis, UniformOnFun.uniformContinuous_restrict, EquicontinuousOn.isUniformInducing_uniformOnFun_iff_pi, UniformOnFun.gen_mem_uniformity, UniformOnFun.edist_eq_pi_restrict, UniformOnFun.edist_def, lipschitzOnWith_cfcβ‚™_fun_of_subset, UniformOnFun.ofFun_prod, ContinuousMap.isUniformEmbedding_toUniformOnFunIsCompact, UniformOnFun.hasBasis_nhds_zero_of_basis, UniformOnFun.toFun_sum, UniformOnFun.uniformContinuous_restrict_toFun, UniformOnFun.precomp_uniformContinuous, eVariationOn.lowerSemicontinuous_uniformOn, UniformOnFun.hasBasis_nhds_of_basis, UniformOnFun.hasBasis_uniformity_of_basis, UniformOnFun.uniformContinuous_eval_of_mem_sUnion, UniformOnFun.toFun_sub, UniformOnFun.gen_mem_nhds, UniformOnFun.isClosed_setOf_continuous, continuousOn_cfcβ‚™_setProd, ContinuousMultilinearMap.toUniformOnFun_toFun, UniformConvergenceCLM.uniformSpace_eq, UniformOnFun.toFun_add, UniformOnFun.hasBasis_nhds_zero, UniformOnFun.inf_eq, UniformOnFun.toFun_inv, UniformOnFun.ofFun_mul, UniformOnFun.hasBasis_nhds_one, UniformOnFun.uniformSpace_eq_inf_precomp_of_cover, UniformOnFun.edist_eq_restrict_sUnion, UniformOnFun.toFun_mul, UniformOnFun.isUniformEmbedding_toFun_finite, UniformOnFun.postcomp_isUniformEmbedding, ContinuousLinearMap.isUniformEmbedding_toUniformOnFun, continuousOn_cfc_nnreal_setProd, UniformOnFun.hasBasis_nhds, EquicontinuousOn.isInducing_uniformOnFun_iff_pi, UniformOnFun.continuousSMul_submodule_of_image_bounded, UniformOnFun.ofFun_add, UniformOnFun.isUniformInducing_pi_restrict, UniformOnFun.uniformContinuous_ofFun_toFun, UniformOnFun.edist_le, ContinuousMap.range_toUniformOnFunIsCompact, UniformOnFun.hasBasis_uniformity_of_basis_aux₁, UniformOnFun.uniformContinuous_eval_of_mem, UniformOnFun.nhds_eq, UniformOnFun.hasAntitoneBasis_uniformity, UniformOnFun.toFun_smul, UniformOnFun.ofFun_smul, UniformOnFun.toFun_prod, UniformConvergenceCLM.isUniformEmbedding_coeFn, continuousOn_cfcβ‚™_nnreal_setProd, eVariationOn.lowerSemicontinuous, UniformOnFun.uniformity_eq, ContinuousMultilinearMap.isUniformInducing_toUniformOnFun, UniformOnFun.ofFun_neg, UniformOnFun.lipschitzWith_restrict, UniformOnFun.hasBasis_uniformity, UniformOnFun.zero_apply, UniformOnFun.toFun_zero, EquicontinuousOn.isUniformInducing_uniformOnFun_iff_pi', UniformOnFun.isBasis_gen, UniformOnFun.lipschitzWith_one_ofFun_toFun', UniformOnFun.iInf_eq

Theorems

NameKindAssumesProvesValidatesDepends On
instNonemptyUniformFun πŸ“–mathematicalβ€”UniformFunβ€”β€”
instNonemptyUniformOnFun πŸ“–mathematicalβ€”UniformOnFunβ€”β€”
instSubsingletonUniformFun πŸ“–mathematicalβ€”UniformFunβ€”β€”
instSubsingletonUniformOnFun πŸ“–mathematicalβ€”UniformOnFunβ€”β€”

---

← Back to Index