Documentation Verification Report

UniformEmbedding

πŸ“ Source: Mathlib/Topology/UniformSpace/UniformEmbedding.lean

Statistics

MetricCount
DefinitionscomapUniformSpace
1
Theoremssum, extend_exists, extend_of_ind, extend_spec, uniformContinuous_extend, to_isUniformEmbedding, isUniformEmbedding, isUniformEmbedding_iff, isUniformEmbedding_iff', isUniformInducing_iff, totallyBounded_comap, totallyBounded_map_iff, completeSpace_coe, completeSpace_coe, isUniformInducing_extend, comp, discreteUniformity, isComplete_iff, isDenseEmbedding, isEmbedding, of_comp_iff, prod, basis_uniformity, cauchy_map_iff, comap_uniformSpace, comp, completeSpace, completeSpace_congr, id, injective, isComplete_iff, isComplete_range, isDenseInducing, isInducing, isUniformEmbedding, isUniformInducing_comp_iff, mk', of_comp, of_comp_iff, prod, rangeFactorization, uniformContinuous, uniformContinuousOn_iff, uniformContinuous_iff, completeSpace_iff, instCompleteSpace, isUniformInducing_mk, isComplete_iff, instCompleteSpace, rangeFactorization, closure_image_mem_nhds_of_isUniformInducing, comap_uniformity_of_spaced_out, completeSpace_coe_iff_isComplete, completeSpace_congr, completeSpace_extension, completeSpace_iff_isComplete_range, completeSpace_ulift_iff, isClosedEmbedding_of_spaced_out, isComplete_image_iff, isComplete_of_complete_image, isUniformEmbedding_comap, isUniformEmbedding_iff', isUniformEmbedding_iff_isUniformInducing, isUniformEmbedding_inl, isUniformEmbedding_inr, isUniformEmbedding_of_spaced_out, isUniformEmbedding_set_inclusion, isUniformEmbedding_subtypeEmb, isUniformEmbedding_subtype_val, isUniformInducing_iff', isUniformInducing_iff_uniformSpace, isUniformInducing_rangeFactorization_iff, isUniformInducing_val, totallyBounded_image_iff, totallyBounded_preimage, uniformContinuous_rangeFactorization_iff, uniformContinuous_uniformly_extend, uniform_extend_subtype, uniformly_extend_exists, uniformly_extend_of_ind, uniformly_extend_spec, uniformly_extend_unique
82
Total83

CompleteSpace

Theorems

NameKindAssumesProvesValidatesDepends On
sum πŸ“–mathematicalβ€”CompleteSpace
Sum.instUniformSpace
β€”completeSpace_iff_isComplete_univ
Set.range_inl_union_range_inr
IsComplete.union
IsUniformInducing.isComplete_range
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_inl
isUniformEmbedding_inr

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
extend_exists πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
UniformContinuous
Set.Elem
instUniformSpaceSubtype
Set
Set.instMembership
Filter.Tendsto
Filter.comap
nhds
β€”uniformly_extend_exists
isUniformInducing_val
denseRange_val
extend_of_ind πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
UniformContinuous
Set.Elem
instUniformSpaceSubtype
Set
Set.instMembership
extendβ€”IsDenseInducing.extend_eq_at
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
isDenseInducing_val
Continuous.continuousAt
UniformContinuous.continuous
extend_spec πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
UniformContinuous
Set.Elem
instUniformSpaceSubtype
Set
Set.instMembership
Filter.Tendsto
Filter.comap
nhds
extend
β€”uniformly_extend_spec
isUniformInducing_val
denseRange_val
uniformContinuous_extend πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
UniformContinuous
Set.Elem
instUniformSpaceSubtype
Set
Set.instMembership
extendβ€”uniformContinuous_uniformly_extend
isUniformInducing_val
denseRange_val

Embedding

Theorems

NameKindAssumesProvesValidatesDepends On
to_isUniformEmbedding πŸ“–mathematicalTopology.IsEmbedding
UniformSpace.toTopologicalSpace
IsUniformEmbedding
Topology.IsEmbedding.comapUniformSpace
β€”Topology.IsEmbedding.injective

Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
isUniformEmbedding πŸ“–mathematicalUniformContinuous
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
IsUniformEmbeddingβ€”isUniformEmbedding_iff'
injective
prodCongr_apply
Filter.map_equiv_symm

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
totallyBounded_comap πŸ“–mathematicalIsUniformInducing
TotallyBounded
comapβ€”totallyBounded_map_iff
TotallyBounded.mono
map_comap_le
totallyBounded_map_iff πŸ“–mathematicalIsUniformInducingTotallyBounded
map
β€”HasBasis.filter_totallyBounded_iff
IsUniformInducing.basis_uniformity
basis_sets
Set.exists_subset_image_finite_and
TotallyBounded.exists_subset_of_mem
image_mem_map
univ_mem
TotallyBounded.map
IsUniformInducing.uniformContinuous

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
isUniformEmbedding_iff πŸ“–mathematicalFilter.HasBasis
uniformity
IsUniformEmbedding
UniformContinuous
Set
Set.instMembership
β€”isUniformEmbedding_iff'
uniformContinuous_iff
isUniformEmbedding_iff' πŸ“–mathematicalFilter.HasBasis
uniformity
IsUniformEmbedding
Set
Set.instMembership
β€”isUniformEmbedding_iff
isUniformInducing_iff
isUniformInducing_iff πŸ“–mathematicalFilter.HasBasis
uniformity
IsUniformInducing
Set
Set.instMembership
β€”uniformContinuous_iff
le_basis_iff
comap

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_coe πŸ“–mathematicalβ€”CompleteSpace
Set.Elem
instUniformSpaceSubtype
Set
Set.instMembership
β€”IsComplete.completeSpace_coe
isComplete

IsComplete

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_coe πŸ“–mathematicalIsCompleteCompleteSpace
Set.Elem
instUniformSpaceSubtype
Set
Set.instMembership
β€”completeSpace_coe_iff_isComplete

IsDenseInducing

Theorems

NameKindAssumesProvesValidatesDepends On
isUniformInducing_extend πŸ“–mathematicalIsDenseInducing
UniformSpace.toTopologicalSpace
IsUniformInducing
extendβ€”IsComplete.completeSpace_coe
IsClosed.isComplete
SeparationQuotient.instCompleteSpace
isClosed_closure
subset_closure
IsUniformInducing.comp
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_set_inclusion
IsUniformInducing.rangeFactorization
DenseRange.comp
denseRange_inclusion_iff
subset_rfl
Set.instReflSubset
Function.Surjective.denseRange
Set.rangeFactorization_surjective
continuous_inclusion
IsUniformInducing.isDenseInducing
uniformContinuous_uniformly_extend
dense
IsUniformInducing.uniformContinuous
isClosed_property
isClosed_eq
SeparationQuotient.t2Space
instR1Space
UniformSpace.to_regularSpace
Continuous.comp
UniformContinuous.continuous
UniformContinuous.comp
extend.congr_simp
extend_eq
instT2SpaceSubtype
inseparable_extend
Continuous.continuousAt
IsUniformInducing.of_comp
Function.comp_assoc
HasSubset.Subset.trans
Set.instIsTransSubset
Continuous.range_subset_closure_image_dense
closure_mono
subset_of_eq
Set.range_comp
Set.coe_comp_rangeFactorization
Set.val_comp_inclusion
Function.Injective.comp_left
Subtype.val_injective
extend_unique
Continuous.rangeFactorization
IsUniformInducing.isUniformInducing_comp_iff
isUniformInducing_val

IsUniformEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”IsUniformEmbeddingβ€”β€”IsUniformInducing.comp
isUniformInducing
injective
discreteUniformity πŸ“–mathematicalIsUniformEmbeddingDiscreteUniformityβ€”IsUniformInducing.comap_uniformity
toIsUniformInducing
DiscreteUniformity.eq_principal_setRelId
Filter.comap_principal
injective
isComplete_iff πŸ“–mathematicalIsUniformEmbeddingIsComplete
Set.image
β€”IsUniformInducing.isComplete_iff
isUniformInducing
isDenseEmbedding πŸ“–mathematicalIsUniformEmbedding
DenseRange
UniformSpace.toTopologicalSpace
IsDenseEmbeddingβ€”isEmbedding
Topology.IsEmbedding.toIsInducing
Topology.IsEmbedding.injective
isEmbedding πŸ“–mathematicalIsUniformEmbeddingTopology.IsEmbedding
UniformSpace.toTopologicalSpace
β€”IsUniformInducing.isInducing
toIsUniformInducing
injective
of_comp_iff πŸ“–β€”IsUniformEmbeddingβ€”β€”IsUniformInducing.of_comp_iff
isUniformInducing
Function.Injective.of_comp_iff
injective
prod πŸ“–mathematicalIsUniformEmbeddinginstUniformSpaceProdβ€”IsUniformInducing.prod
isUniformInducing
Function.Injective.prodMap
injective

IsUniformInducing

Theorems

NameKindAssumesProvesValidatesDepends On
basis_uniformity πŸ“–mathematicalIsUniformInducing
Filter.HasBasis
uniformity
Set.preimageβ€”Filter.HasBasis.comap
comap_uniformity
cauchy_map_iff πŸ“–mathematicalIsUniformInducingCauchy
Filter.map
β€”Filter.prod_map_map_eq
comap_uniformity
comap_uniformSpace πŸ“–mathematicalIsUniformInducingUniformSpace.comapβ€”isUniformInducing_iff_uniformSpace
comp πŸ“–β€”IsUniformInducingβ€”β€”comap_uniformity
Filter.comap_comap
completeSpace πŸ“–mathematicalIsUniformInducing
IsComplete
Set.range
CompleteSpaceβ€”completeSpace_iff_isComplete_range
completeSpace_congr πŸ“–mathematicalIsUniformInducingCompleteSpaceβ€”completeSpace_iff_isComplete_range
Function.Surjective.range_eq
completeSpace_iff_isComplete_univ
id πŸ“–mathematicalβ€”IsUniformInducingβ€”Prod.map_def
Filter.comap_id
injective πŸ“–β€”IsUniformInducingβ€”β€”Topology.IsInducing.injective
isInducing
isComplete_iff πŸ“–mathematicalIsUniformInducingIsComplete
Set.image
β€”isComplete_image_iff
isComplete_range πŸ“–mathematicalIsUniformInducingIsComplete
Set.range
β€”completeSpace_iff_isComplete_range
isDenseInducing πŸ“–mathematicalIsUniformInducing
DenseRange
UniformSpace.toTopologicalSpace
IsDenseInducingβ€”isInducing
isInducing πŸ“–mathematicalIsUniformInducingTopology.IsInducing
UniformSpace.toTopologicalSpace
β€”Topology.IsInducing.induced
comap_uniformSpace
isUniformEmbedding πŸ“–mathematicalIsUniformInducingIsUniformEmbeddingβ€”Topology.IsInducing.injective
isInducing
isUniformInducing_comp_iff πŸ“–β€”IsUniformInducingβ€”β€”comap_uniformity
Filter.comap_comap
mk' πŸ“–mathematicalSet
Filter
Filter.instMembership
uniformity
Set.instMembership
IsUniformInducingβ€”β€”
of_comp πŸ“–β€”UniformContinuous
IsUniformInducing
β€”β€”le_antisymm
comap_uniformity
Prod.map_def
Filter.comap_comap
Filter.comap_mono
Filter.Tendsto.le_comap
of_comp_iff πŸ“–β€”IsUniformInducingβ€”β€”isUniformInducing_iff
comap_uniformity
Filter.comap_comap
comp
prod πŸ“–mathematicalIsUniformInducinginstUniformSpaceProdβ€”Filter.comap_inf
Filter.comap_comap
comap_uniformity
rangeFactorization πŸ“–mathematicalIsUniformInducingSet.Elem
Set.range
instUniformSpaceSubtype
Set
Set.instMembership
Set.rangeFactorization
β€”isUniformInducing_rangeFactorization_iff
uniformContinuous πŸ“–mathematicalIsUniformInducingUniformContinuousβ€”isUniformInducing_iff'
uniformContinuousOn_iff πŸ“–mathematicalIsUniformInducingUniformContinuousOnβ€”comap_uniformity
Filter.map_le_iff_le_comap
Filter.map_map
uniformContinuous_iff πŸ“–mathematicalIsUniformInducingUniformContinuousβ€”comap_uniformity
Filter.map_map

SeparationQuotient

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_iff πŸ“–mathematicalβ€”CompleteSpace
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
β€”IsUniformInducing.completeSpace_congr
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
β€”completeSpace_iff
isUniformInducing_mk πŸ“–mathematicalβ€”IsUniformInducing
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
β€”comap_mk_uniformity

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
isComplete_iff πŸ“–mathematicalβ€”IsComplete
instUniformSpaceSubtype
Set.image
β€”IsUniformEmbedding.isComplete_iff
isUniformEmbedding_subtype_val

Topology.IsEmbedding

Definitions

NameCategoryTheorems
comapUniformSpace πŸ“–CompOp
1 mathmath: Embedding.to_isUniformEmbedding

ULift

Theorems

NameKindAssumesProvesValidatesDepends On
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
uniformSpace
β€”completeSpace_ulift_iff

UniformContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
rangeFactorization πŸ“–mathematicalUniformContinuousSet.Elem
Set.range
instUniformSpaceSubtype
Set
Set.instMembership
Set.rangeFactorization
β€”uniformContinuous_rangeFactorization_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
closure_image_mem_nhds_of_isUniformInducing πŸ“–mathematicalIsUniformInducing
IsDenseInducing
UniformSpace.toTopologicalSpace
Set
Filter
Filter.instMembership
uniformity
nhds
closure
Set.image
setOf
Set.instMembership
β€”Filter.HasBasis.mem_iff
Filter.HasBasis.comap
uniformity_hasBasis_open_symmetric
IsUniformInducing.comap_uniformity
DenseRange.mem_nhds
IsDenseInducing.dense
UniformSpace.ball_mem_nhds
Filter.mem_of_superset
UniformSpace.isOpen_ball
IsOpen.mem_nhds
UniformSpace.mem_ball_symmetry
mem_closure_iff_nhds
Filter.inter_mem
Set.mem_image_of_mem
closure_mono
Set.image_mono
UniformSpace.ball_mono
comap_uniformity_of_spaced_out πŸ“–mathematicalSet
Filter
Filter.instMembership
uniformity
Pairwise
Set.instMembership
Filter.comap
Filter.principal
SetRel.id
β€”le_antisymm
Filter.comap_mono
Filter.le_principal_iff
Filter.comap_principal
Filter.principal_mono
refl_le_uniformity
completeSpace_coe_iff_isComplete πŸ“–mathematicalβ€”CompleteSpace
Set.Elem
instUniformSpaceSubtype
Set
Set.instMembership
IsComplete
β€”completeSpace_iff_isComplete_range
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_subtype_val
Subtype.range_coe
completeSpace_congr πŸ“–mathematicalIsUniformEmbedding
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
CompleteSpaceβ€”IsUniformInducing.completeSpace_congr
IsUniformEmbedding.toIsUniformInducing
Equiv.surjective
completeSpace_extension πŸ“–mathematicalIsUniformInducing
DenseRange
UniformSpace.toTopologicalSpace
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.map
nhds
CompleteSpaceβ€”le_iInfβ‚‚
Filter.le_principal_iff
Filter.mem_of_superset
refl_mem_uniformity
Filter.NeBot.mono
Filter.comap_neBot
Filter.mem_lift_sets
Filter.monotone_lift'
monotone_const
Filter.mem_lift'_sets
Filter.NeBot.nonempty_of_mem
DenseRange.nhdsWithin_neBot
Filter.mem_inf_of_left
mem_nhds_left
Filter.mem_inf_of_right
Set.Subset.refl
Filter.inter_mem
comp_mem_uniformity_sets
Filter.mem_prod_same_iff
Filter.mem_lift
symm_le_uniformity
Filter.mem_lift'
Filter.prod_mem_prod
Filter.sets_of_superset
SetRel.prodMk_mem_comp
Cauchy.comap'
le_of_eq
IsUniformInducing.comap_uniformity
le_nhds_iff_adhp_of_cauchy
Cauchy.map
IsUniformInducing.uniformContinuous
ClusterPt.mono
Filter.map_comap_le
le_nhds_of_cauchy_adhp
completeSpace_iff_isComplete_range πŸ“–mathematicalIsUniformInducingCompleteSpace
IsComplete
Set.range
β€”completeSpace_iff_isComplete_univ
isComplete_image_iff
Set.image_univ
completeSpace_ulift_iff πŸ“–mathematicalβ€”CompleteSpace
ULift.uniformSpace
β€”IsUniformInducing.completeSpace_congr
ULift.down_surjective
isClosedEmbedding_of_spaced_out πŸ“–mathematicalSet
Filter
Filter.instMembership
uniformity
Pairwise
Set.instMembership
Topology.IsClosedEmbedding
UniformSpace.toTopologicalSpace
β€”IsUniformEmbedding.isEmbedding
isUniformEmbedding_of_spaced_out
isClosed_range_of_spaced_out
DiscreteTopology.eq_bot
isComplete_image_iff πŸ“–mathematicalIsUniformInducingIsComplete
Set.image
β€”Set.SurjOn.filter_map_Iic
Set.surjOn_image
Set.MapsTo.filter_map_Iic
Set.mapsTo_image
Set.mem_Iic
Set.SurjOn.forall
IsUniformInducing.cauchy_map_iff
Topology.IsInducing.nhds_eq_comap
IsUniformInducing.isInducing
isComplete_of_complete_image πŸ“–β€”IsUniformInducing
IsComplete
Set.image
β€”β€”isComplete_image_iff
isUniformEmbedding_comap πŸ“–mathematicalβ€”IsUniformEmbedding
UniformSpace.comap
β€”β€”
isUniformEmbedding_iff' πŸ“–mathematicalβ€”IsUniformEmbedding
UniformContinuous
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
uniformity
β€”isUniformEmbedding_iff
isUniformInducing_iff'
isUniformEmbedding_iff_isUniformInducing πŸ“–mathematicalβ€”IsUniformEmbedding
IsUniformInducing
β€”IsUniformEmbedding.isUniformInducing
IsUniformInducing.isUniformEmbedding
isUniformEmbedding_inl πŸ“–mathematicalβ€”IsUniformEmbedding
Sum.instUniformSpace
β€”isUniformEmbedding_iff'
Sum.inl_injective
uniformContinuous_inl
Filter.union_mem_sup
Filter.image_mem_map
Filter.range_mem_map
Set.image_congr
Set.range_prodMap
isUniformEmbedding_inr πŸ“–mathematicalβ€”IsUniformEmbedding
Sum.instUniformSpace
β€”isUniformEmbedding_iff'
Sum.inr_injective
uniformContinuous_inr
Filter.union_mem_sup
Filter.range_mem_map
Filter.image_mem_map
Set.range_prodMap
Set.image_congr
isUniformEmbedding_of_spaced_out πŸ“–mathematicalSet
Filter
Filter.instMembership
uniformity
Pairwise
Set.instMembership
IsUniformEmbedding
Bot.bot
UniformSpace
instBotUniformSpace
β€”discreteTopology_bot
IsUniformInducing.isUniformEmbedding
T1Space.t0Space
T2Space.t1Space
DiscreteTopology.toT2Space
comap_uniformity_of_spaced_out
isUniformEmbedding_set_inclusion πŸ“–mathematicalSet
Set.instHasSubset
IsUniformEmbedding
Set.Elem
instUniformSpaceSubtype
Set.instMembership
Set.inclusion
β€”uniformity_subtype
Filter.comap_comap
Set.inclusion_injective
isUniformEmbedding_subtypeEmb πŸ“–mathematicalIsUniformEmbedding
IsDenseEmbedding
UniformSpace.toTopologicalSpace
Set
Set.instMembership
closure
Set.image
setOf
instUniformSpaceSubtype
IsDenseEmbedding.subtypeEmb
β€”Filter.comap_comap
IsUniformInducing.comap_uniformity
IsUniformEmbedding.toIsUniformInducing
IsDenseEmbedding.injective
IsDenseEmbedding.subtype
isUniformEmbedding_subtype_val πŸ“–mathematicalβ€”IsUniformEmbedding
instUniformSpaceSubtype
β€”Subtype.val_injective
isUniformInducing_iff' πŸ“–mathematicalβ€”IsUniformInducing
UniformContinuous
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
uniformity
β€”isUniformInducing_iff
UniformContinuous.eq_1
Filter.tendsto_iff_comap
le_antisymm_iff
isUniformInducing_iff_uniformSpace πŸ“–mathematicalβ€”IsUniformInducing
UniformSpace.comap
β€”isUniformInducing_iff
UniformSpace.ext_iff
Filter.ext_iff
isUniformInducing_rangeFactorization_iff πŸ“–mathematicalβ€”IsUniformInducing
Set.Elem
Set.range
instUniformSpaceSubtype
Set
Set.instMembership
Set.rangeFactorization
β€”IsUniformInducing.isUniformInducing_comp_iff
isUniformInducing_val
isUniformInducing_val πŸ“–mathematicalβ€”IsUniformInducing
instUniformSpaceSubtype
β€”uniformity_setCoe
totallyBounded_image_iff πŸ“–mathematicalIsUniformInducingTotallyBounded
Set.image
β€”Filter.totallyBounded_map_iff
totallyBounded_preimage πŸ“–mathematicalIsUniformInducing
TotallyBounded
Set.preimageβ€”totallyBounded_image_iff
TotallyBounded.subset
Set.image_preimage_subset
uniformContinuous_rangeFactorization_iff πŸ“–mathematicalβ€”UniformContinuous
Set.Elem
Set.range
instUniformSpaceSubtype
Set
Set.instMembership
Set.rangeFactorization
β€”IsUniformInducing.uniformContinuous_iff
isUniformInducing_val
uniformContinuous_uniformly_extend πŸ“–mathematicalIsUniformInducing
DenseRange
UniformSpace.toTopologicalSpace
UniformContinuous
IsDenseInducing.extend
IsUniformInducing.isDenseInducing
β€”IsUniformInducing.isDenseInducing
comp3_mem_uniformity
Filter.NeBot.map
IsDenseInducing.comap_nhds_neBot
Filter.inter_mem
Filter.image_mem_map
Filter.preimage_mem_comap
uniformly_extend_spec
mem_nhds_right
mem_nhds_left
Filter.NeBot.nonempty_of_mem
IsUniformInducing.comap_uniformity
Filter.mem_of_superset
interior_mem_uniformity
IsOpen.mem_nhds
isOpen_interior
mem_nhds_prod_iff
Set.mem_preimage
interior_subset
uniform_extend_subtype πŸ“–mathematicalUniformContinuous
instUniformSpaceSubtype
IsUniformEmbedding
Set
Set.instMembership
closure
UniformSpace.toTopologicalSpace
Set.range
Filter
Filter.instMembership
nhds
Set.image
Filter.Tendsto
Filter.comap
β€”IsUniformEmbedding.isDenseEmbedding
IsDenseEmbedding.subtype
isUniformEmbedding_subtypeEmb
closure_mono
Set.monotone_image
mem_of_mem_nhds
uniformly_extend_exists
IsUniformEmbedding.isUniformInducing
IsDenseInducing.dense
IsDenseEmbedding.toIsDenseInducing
Filter.comap_comap
nhds_subtype_eq_comap
Filter.tendsto_comap'_iff
Subtype.range_coe_subtype
Topology.IsInducing.closure_eq_preimage_closure_image
IsDenseInducing.isInducing
IsClosed.closure_eq
uniformly_extend_exists πŸ“–mathematicalIsUniformInducing
DenseRange
UniformSpace.toTopologicalSpace
UniformContinuous
Filter.Tendsto
Filter.comap
nhds
β€”IsUniformInducing.isDenseInducing
cauchy_nhds
Cauchy.comap'
le_of_eq
IsUniformInducing.comap_uniformity
IsDenseInducing.comap_nhds_neBot
Cauchy.map
CompleteSpace.complete
uniformly_extend_of_ind πŸ“–mathematicalIsUniformInducing
DenseRange
UniformSpace.toTopologicalSpace
UniformContinuous
IsDenseInducing.extend
IsUniformInducing.isDenseInducing
β€”IsDenseInducing.extend_eq_at
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
IsUniformInducing.isDenseInducing
Continuous.continuousAt
UniformContinuous.continuous
uniformly_extend_spec πŸ“–mathematicalIsUniformInducing
DenseRange
UniformSpace.toTopologicalSpace
UniformContinuous
Filter.Tendsto
Filter.comap
nhds
IsDenseInducing.extend
IsUniformInducing.isDenseInducing
β€”IsUniformInducing.isDenseInducing
tendsto_nhds_limUnder
uniformly_extend_exists
uniformly_extend_unique πŸ“–mathematicalIsUniformInducing
DenseRange
UniformSpace.toTopologicalSpace
Continuous
IsDenseInducing.extend
IsUniformInducing.isDenseInducing
β€”IsDenseInducing.extend_unique
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
IsUniformInducing.isDenseInducing

---

← Back to Index