UniformEmbedding
π Source: Mathlib/Topology/UniformSpace/UniformEmbedding.lean
Statistics
CompleteSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
sum π | mathematical | β | CompleteSpaceSum.instUniformSpace | β | completeSpace_iff_isComplete_univSet.range_inl_union_range_inrIsComplete.unionIsUniformInducing.isComplete_rangeIsUniformEmbedding.isUniformInducingisUniformEmbedding_inlisUniformEmbedding_inr |
Dense
Theorems
Embedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
to_isUniformEmbedding π | mathematical | Topology.IsEmbeddingUniformSpace.toTopologicalSpace | IsUniformEmbeddingTopology.IsEmbedding.comapUniformSpace | β | Topology.IsEmbedding.injective |
Equiv
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isUniformEmbedding π | mathematical | UniformContinuousDFunLike.coeEquivEquivLike.toFunLikeinstEquivLikesymm | IsUniformEmbedding | β | isUniformEmbedding_iff'injectiveprodCongr_applyFilter.map_equiv_symm |
Filter
Theorems
Filter.HasBasis
Theorems
IsClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
completeSpace_coe π | mathematical | β | CompleteSpaceSet.EleminstUniformSpaceSubtypeSetSet.instMembership | β | IsComplete.completeSpace_coeisComplete |
IsComplete
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
completeSpace_coe π | mathematical | IsComplete | CompleteSpaceSet.EleminstUniformSpaceSubtypeSetSet.instMembership | β | completeSpace_coe_iff_isComplete |
IsDenseInducing
Theorems
IsUniformEmbedding
Theorems
IsUniformInducing
Theorems
SeparationQuotient
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
completeSpace_iff π | mathematical | β | CompleteSpaceSeparationQuotientUniformSpace.toTopologicalSpaceinstUniformSpace | β | IsUniformInducing.completeSpace_congr |
instCompleteSpace π | mathematical | β | CompleteSpaceSeparationQuotientUniformSpace.toTopologicalSpaceinstUniformSpace | β | completeSpace_iff |
isUniformInducing_mk π | mathematical | β | IsUniformInducingSeparationQuotientUniformSpace.toTopologicalSpaceinstUniformSpace | β | comap_mk_uniformity |
Subtype
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isComplete_iff π | mathematical | β | IsCompleteinstUniformSpaceSubtypeSet.image | β | IsUniformEmbedding.isComplete_iffisUniformEmbedding_subtype_val |
Topology.IsEmbedding
Definitions
| Name | Category | Theorems |
|---|---|---|
comapUniformSpace π | CompOp |
ULift
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instCompleteSpace π | mathematical | β | CompleteSpaceuniformSpace | β | completeSpace_ulift_iff |
UniformContinuous
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
rangeFactorization π | mathematical | UniformContinuous | Set.ElemSet.rangeinstUniformSpaceSubtypeSetSet.instMembershipSet.rangeFactorization | β | uniformContinuous_rangeFactorization_iff |
(root)
Theorems
---