Documentation Verification Report

Uniformizable

πŸ“ Source: Mathlib/Topology/UniformSpace/Uniformizable.lean

Statistics

MetricCount
Definitions0
Theoremsexists_uniformSpace, of_exists_uniformSpace, toCompletelyRegularSpace, completelyRegularSpace_iff_exists_uniformSpace
4
Total4

CompletelyRegularSpace

Theorems

NameKindAssumesProvesValidatesDepends On
exists_uniformSpace πŸ“–mathematicalβ€”UniformSpace.toTopologicalSpaceβ€”TopologicalSpace.isOpen_univ
instCompactSpaceStoneCech
T2Space.r1Space
instT2SpaceStoneCech
Topology.IsInducing.eq_induced
isInducing_stoneCechUnit
of_exists_uniformSpace πŸ“–mathematicalUniformSpace.toTopologicalSpaceCompletelyRegularSpaceβ€”UniformSpace.toCompletelyRegularSpace

UniformSpace

Theorems

NameKindAssumesProvesValidatesDepends On
toCompletelyRegularSpace πŸ“–mathematicalβ€”CompletelyRegularSpace
toTopologicalSpace
β€”Real.instIsOrderedRing
isOpen_iff_isOpen_ball_subset
IsClosed.isOpen_compl
comp_comp_symm_mem_uniformity_sets
HasSubset.Subset.trans
Set.instIsTransSubset
SetRel.comp_subset_comp_left
SetRel.comp_subset_comp_right
interior_subset
isOpen_interior
interior_mem_uniformity
ball_mono
isClosed_closure
isOpen_ball
closure_ball_subset
closure_eq_inter_uniformity
Set.iInter_congr_Prop
Set.iInterβ‚‚_subset
Urysohns.CU.lim_mem_Icc
Urysohns.CU.continuous_lim
Urysohns.CU.lim_of_mem_C
subset_closure
refl_mem_uniformity
Urysohns.CU.lim_of_notMem_U

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
completelyRegularSpace_iff_exists_uniformSpace πŸ“–mathematicalβ€”CompletelyRegularSpace
UniformSpace.toTopologicalSpace
β€”CompletelyRegularSpace.exists_uniformSpace
CompletelyRegularSpace.of_exists_uniformSpace

---

← Back to Index