Documentation Verification Report

UnitInterval

πŸ“ Source: Mathlib/Topology/UnitInterval.lean

Statistics

MetricCount
DefinitionsaddNSMul, convexCombo, convexCombo_assoc_coeff₁, convexCombo_assoc_coeff₁', convexCombo_assoc_coeffβ‚‚, convexCombo_assoc_coeffβ‚‚', tacticUnit_interval, iccHomeoI, unitInterval, instLinearOrderedCommMonoidWithZeroElemReal, submonoid, symmHomeomorph, termI, termΟƒ, toNNReal
15
Theoremsabs_sub_addNSMul_le, addNSMul_eq_right, addNSMul_zero, coe_convexCombo, convexCombo_assoc, convexCombo_assoc', convexCombo_le, convexCombo_one, convexCombo_symm, convexCombo_zero, eq_convexCombo, le_convexCombo, monotone_addNSMul, abs_projIcc_sub_projIcc, affineHomeomorph_image_I, exists_monotone_Icc_subset_open_cover_Icc, exists_monotone_Icc_subset_open_cover_unitInterval, exists_monotone_Icc_subset_open_cover_unitInterval_prod_self, iccHomeoI_apply_coe, iccHomeoI_symm_apply_coe, projIcc_eq_one, projIcc_eq_zero, add_pos, coe_lt_one, coe_ne_one, coe_ne_zero, coe_pos, coe_symm_eq, coe_toNNReal, coe_unitIntervalSubmonoid, continuous_symm, div_mem, eq_closedBall, eq_one_or_eq_zero_of_le_mul, fract_mem, half_le_symm_iff, image_coe_preimage_symm, instConnectedSpaceElemReal, instNontrivialElemReal, le_one, le_one', le_symm_comm, lt_one_iff_ne_one, lt_symm_comm, mem_unitIntervalSubmonoid, mul_le_left, mul_le_right, mul_mem, mul_pos_mem_iff, nonneg, nonneg', one_mem, one_minus_le_one, one_minus_nonneg, pos_iff_ne_zero, prod_mem, strictAnti_symm, subtype_Ici_eq_Icc, subtype_Iic_eq_Icc, subtype_Iio_eq_Ico, subtype_Ioi_eq_Ioc, symmHomeomorph_apply, symmHomeomorph_symm_apply, symm_bijective, symm_eq_one, symm_eq_zero, symm_inj, symm_involutive, symm_le_comm, symm_le_symm, symm_lt_comm, symm_lt_symm, symm_one, symm_projIcc, symm_symm, symm_zero, toNNReal_add_toNNReal_symm, toNNReal_continuous, toNNReal_one, toNNReal_symm_add_toNNReal, toNNReal_zero, two_mul_sub_one_mem_iff, univ_eq_Icc, zero_mem
84
Total99

Set

Theorems

NameKindAssumesProvesValidatesDepends On
abs_projIcc_sub_projIcc πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddCommGroup.toAddGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
Set
instMembership
Icc
projIcc
β€”abs_eq_self
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
monotone_projIcc
LE.le.trans
max_sub_max_le_max
max_le
sub_self
le_abs_self
abs_min_sub_min_le_max
abs_zero
Eq.le
abs_sub_comm
le_of_not_ge

Set.Icc

Definitions

NameCategoryTheorems
addNSMul πŸ“–CompOp
3 mathmath: addNSMul_eq_right, addNSMul_zero, monotone_addNSMul
convexCombo πŸ“–CompOp
9 mathmath: convexCombo_one, coe_convexCombo, eq_convexCombo, convexCombo_assoc, le_convexCombo, convexCombo_symm, convexCombo_assoc', convexCombo_le, convexCombo_zero
convexCombo_assoc_coeff₁ πŸ“–CompOp
1 mathmath: convexCombo_assoc
convexCombo_assoc_coeff₁' πŸ“–CompOp
1 mathmath: convexCombo_assoc'
convexCombo_assoc_coeffβ‚‚ πŸ“–CompOp
1 mathmath: convexCombo_assoc
convexCombo_assoc_coeffβ‚‚' πŸ“–CompOp
1 mathmath: convexCombo_assoc'

Theorems

NameKindAssumesProvesValidatesDepends On
abs_sub_addNSMul_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.Elem
Set.Icc
Set
Set.instMembership
Subtype.preorder
addNSMul
abs
AddCommGroup.toAddGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”abs_eq_self
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_le_sub_right
le_abs_self
Set.abs_projIcc_sub_projIcc
add_sub_add_comm
sub_self
zero_add
succ_nsmul'
add_sub_cancel_right
Eq.le
addNSMul_eq_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set
Set.instMembership
Set.Icc
addNSMul
β€”Archimedean.arch
addNSMul.eq_1
Set.coe_projIcc
add_comm
min_eq_left_iff
sub_le_iff_le_add
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
LE.le.trans
nsmul_le_nsmul_left
LT.lt.le
max_eq_right
addNSMul_zero πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.Icc
addNSMul
β€”addNSMul.eq_1
zero_smul
add_zero
Set.left_mem_Icc
Set.projIcc_left
coe_convexCombo πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Icc
Real.instPreorder
convexCombo
Real.instAdd
Real.instMul
Real.instSub
Real.instOne
unitInterval
β€”β€”
convexCombo_assoc πŸ“–mathematicalβ€”convexCombo
convexCombo_assoc_coeff₁
convexCombo_assoc_coeffβ‚‚
β€”sub_self
MulZeroClass.zero_mul
one_mul
zero_add
mul_one
MulZeroClass.mul_zero
div_zero
sub_zero
add_zero
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
zero_div
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.RingNF.add_neg
convexCombo_assoc' πŸ“–mathematicalβ€”convexCombo
convexCombo_assoc_coeffβ‚‚'
convexCombo_assoc_coeff₁'
β€”convexCombo_symm
convexCombo_assoc
convexCombo_assoc_coeff₁'.eq_1
convexCombo_assoc_coeffβ‚‚'.eq_1
unitInterval.symm_symm
convexCombo_le πŸ“–mathematicalSet.Elem
Real
Set.Icc
Real.instPreorder
Real.instLE
Set
Set.instMembership
convexComboβ€”Subtype.coe_le_coe
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
convexCombo_one πŸ“–mathematicalβ€”convexCombo
Set.Elem
Real
unitInterval
instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
sub_self
MulZeroClass.zero_mul
one_mul
zero_add
Subtype.coe_eta
convexCombo_symm πŸ“–mathematicalβ€”convexCombo
unitInterval.symm
β€”sub_sub_cancel
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
convexCombo_zero πŸ“–mathematicalβ€”convexCombo
Set.Elem
Real
unitInterval
instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
sub_zero
one_mul
MulZeroClass.zero_mul
add_zero
Subtype.coe_eta
eq_convexCombo πŸ“–mathematicalSet.Elem
Real
Set.Icc
Real.instPreorder
Real.instLE
Set
Set.instMembership
convexCombo
unitInterval
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Preorder.toLE
Real.instZero
Real.instOne
β€”div_zero
sub_zero
one_mul
MulZeroClass.zero_mul
add_zero
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.le_of_eq_of_le
sub_eq_zero_of_eq
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.add_neg
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.mul_one
le_convexCombo πŸ“–mathematicalSet.Elem
Real
Set.Icc
Real.instPreorder
Real.instLE
Set
Set.instMembership
convexComboβ€”Subtype.coe_le_coe
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
monotone_addNSMul πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Monotone
Set.Elem
Set.Icc
Nat.instPreorder
Subtype.preorder
Set
Set.instMembership
addNSMul
β€”Set.monotone_projIcc
add_le_add_iff_left
IsOrderedAddMonoid.toAddLeftMono
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
nsmul_le_nsmul_left

Tactic.Interactive

Definitions

NameCategoryTheorems
tacticUnit_interval πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
iccHomeoI πŸ“–CompOp
3 mathmath: iccHomeoI_apply_coe, iccHomeoI_symm_apply_coe, polynomialFunctions.comap_compRightAlgHom_iccHomeoI
unitInterval πŸ“–CompOp
310 mathmath: ContinuousMap.HomotopyRel.prod_apply, completelyRegularSpace_iff_isOpen, Path.subpath_self, IsPathConnected.exists_path_through_family', bernsteinApproximation.apply_zero, unitInterval.sigmoid_le_iff, unitInterval.symmHomeomorph_apply, Path.continuousMapClass, unitInterval.volume_Ioo, unitInterval.volume_Iic, ContinuousMap.HomotopyWith.coe_toContinuousMap, unitInterval.volume_def, unitInterval.sigmoid_lt, unitInterval.zero_mem, unitInterval.strictAnti_symm, Metric.PiNatEmbed.continuous_distDenseSeq_inv, ProbabilityTheory.unitInterval.cdf_eq_real, Path.extend_extends, GenLoop.fromLoop_apply, stdSimplexHomeomorphUnitInterval_symm_apply_coe, unitInterval.toNNReal_continuous, unitInterval.measurePreserving_coe, ContinuousMap.Homotopy.apply_zero_path, selfAdjoint.expUnitaryPathToOne_apply, HomotopyGroup.symmAt_indep, ContDiffPointwiseHolderAt.isBigO, ContinuousMap.HomotopyWith.prop', unitInterval.pos_iff_ne_zero, Path.Homotopy.map_apply, Path.pi_coe, unitInterval.coe_symmMeasurableEquiv, Path.range_subpathAux, unitInterval.volume_Ico, Path.ext_iff, ContinuousMap.HomotopyLike.map_zero_left, ContinuousMap.Homotopy.evalAt_eq, unitInterval.volume_apply, unitInterval.sigmoid_strictMono, unitInterval.symm_le_symm, stdSimplexHomeomorphUnitInterval_zero, GenLoop.homotopyTo_apply, Path.Homotopy.continuous_transAssocReparamAux, Path.Homotopy.target, unitInterval.symmMeasurableEquiv_apply, HomotopyGroup.isUnital_auxGroup, unitInterval.mem_unitIntervalSubmonoid, Path.delayReflRight_zero, ContinuousMap.HomotopyWith.apply_one, Path.Homotopy.eval_zero, ContinuousMap.HomotopyRel.refl_apply, unitInterval.qRight_one_left, ContinuousMap.Homotopy.ulift_apply, GenLoop.loopHomeo_apply, Path.delayReflLeft_one, ProbabilityTheory.setBernoulli_one, ContinuousMap.HomotopyRel.trans_apply, Path.Homotopy.reflTransSymmAux_mem_I, ContinuousMap.Homotopy.cast_apply, Path.toHomotopyConst_apply, unitInterval.measurePreserving_symm, Path.extend_apply, measurableEmbedding_sigmoid, HomotopyGroup.transAt_indep, unitInterval.toNNReal_zero, ContinuousMap.Homotopy.compContinuousMap_apply, Path.cast_coe, ContinuousMap.Homotopy.comp_apply, Path.subpathAux_one, Path.continuous_delayReflRight, unitInterval.lt_one_iff_ne_one, measurableEmbedding_sigmoid_comp_embeddingReal, unitInterval.lt_symm_comm, GenLoop.instContinuousEval, Path.Homotopy.hcomp_half, Set.Icc.convexCombo_one, Path.Homotopy.hcomp_apply, Path.continuous_delayReflLeft, Path.Homotopy.symm_apply, unitInterval.volume_uIcc, Path.instContinuousEvalElemRealUnitInterval, Path.Homotopy.transAssocReparamAux_mem_I, unitInterval.volume_Ici, Path.Homotopy.eval_apply, Path.Homotopy.transAssocReparamAux_zero, IsPathConnected.exists_path_through_family, ContinuousMap.Homotopy.apply_one_path, unitInterval.volume_uIoo, IsCoveringMap.liftPath_const, ContinuousMap.HomotopyRel.compContinuousMap_apply, Path.mul_apply, ContinuousMap.HomotopyLike.toContinuousMapClass, bernstein.variance, bernstein_apply, GenLoop.ext_iff, unitInterval.measurable_symm, Metric.PiNatEmbed.separation, unitInterval.continuous_sigmoid, ContinuousMap.HomotopyWith.coeFn_injective, Path.Homotopy.transAssocReparamAux_one, Path.Homotopy.transReflReparamAux_one, unitInterval.one_minus_le_one, ContinuousMap.Homotopy.extend_apply_coe, Set.Icc.coe_convexCombo, ContinuousMap.Homotopy.evalAt_apply, ContinuousMap.Homotopy.symm_apply, unitInterval.volume_Icc, unitInterval.range_sigmoid, Path.source', unitInterval.coe_unitIntervalSubmonoid, unitInterval.mul_le_left, GenLoop.continuous_fromLoop, contDiffPointwiseHolderAt_iff, Path.reparam_id, Path.uniformContinuous, ContinuousMap.HomotopyWith.trans_apply, Set.Icc.eq_convexCombo, GenLoop.toLoop_apply, unitInterval.one_mem, unitInterval.fract_mem, Path.Homotopy.trans_assoc_reparam, HomotopyGroup.mul_spec, Path.extend_range, unitInterval.symm_one, GenLoop.fromLoop_symm_toLoop, Path.delayReflLeft_zero, unitInterval.coe_symm_eq, unitInterval.symmMeasurableEquiv_symm_apply, unitInterval.qRight_zero_right, unitInterval.mul_le_right, Path.isUniformEmbedding_coe, unitInterval.symmHomeomorph_symm_apply, Path.range_subpath, unitInterval.continuous_qRight, Path.symm_apply, unitInterval.nonneg', unitInterval.le_one', Path.Homotopy.trans_apply, unitInterval.symm_le_comm, Metric.PiNatEmbed.exists_closed_embedding_to_hilbert_cube, unitInterval.instTietzeExtension, Path.Homotopy.continuous_reflTransSymmAux, Path.inv_apply, ContinuousMap.Homotopy.trans_apply, unitInterval.div_mem, ContinuousMap.HomotopyRel.symm_apply, Path.refl_apply, Path.range_segment, ProbabilityTheory.setBernoulli_zero, Path.continuous_uncurry_iff, unitInterval.qRight_zero_left, bernsteinApproximation.apply_one, Path.prod_coe, bernstein_nonneg, Manifold.riemannianEDist_def, unitInterval.le_one, curveIntegralFun_def', unitInterval.instIsProbabilityMeasureElemRealVolume, unitInterval.symm_eq_zero, stdSimplexHomeomorphUnitInterval_apply_coe, ContinuousMap.Homotopy.curry_apply, unitInterval.mul_pos_mem_iff, unitInterval.sigmoid_injective, Path.Homotopy.transReflReparamAux_zero, Path.Homotopy.cast_apply, GenLoop.toLoop_apply_coe, Metric.PiNatEmbed.continuous_distDenseSeq, bernstein.z_zero, Path.Homotopy.coeFn_injective, unitInterval.image_coe_preimage_symm, Real.fromBinary_surjective, CompletelyRegularSpace.completely_regular, GenLoop.loopHomeo_symm_apply, ContinuousMap.HomotopyWith.ext_iff, Path.continuous, Path.source_mem_range, ContinuousMap.HomotopyLike.map_one_left, Path.neg_apply, Path.target_mem_range, unitInterval.tendsto_sigmoid_atTop, PathConnectedSpace.exists_path_through_family, unitInterval.symm_zero, Path.subpathAux_continuous, unitInterval.subtype_Ici_eq_Icc, unitInterval.symm_lt_comm, unitInterval.coe_lt_one, unitInterval.sigmoid_lt_iff, unitInterval.subtype_Iio_eq_Ico, HomotopyGroup.one_def, Path.target', unitInterval.volume_Ioc, unitInterval.coe_pos, stdSimplexHomeomorphUnitInterval_one, ContinuousMap.Homotopy.continuous, Path.trans_apply, ContinuousMap.Homotopy.affine_apply, Path.trans_range, Path.symm_subpath, HomotopyGroup.inv_spec, PathConnectedSpace.exists_path_through_family', Path.range_coe, separatesPoints_continuous_of_t35Space_Icc, Path.Homotopy.transReflReparamAux_mem_I, Path.add_apply, Path.map_coe, ContinuousMap.Homotopy.coe_toContinuousMap, ContinuousMap.Homotopy.apply_zero, Path.subpath_continuous_family, JoinedIn.somePath_mem, Path.Homotopy.continuous_transReflReparamAux, cantorToHilbert_continuous, ContinuousMap.Homotopy.prod_apply, Path.refl_range, ContinuousMap.HomotopyWith.prop, Path.id_apply, ContinuousMap.HomotopyWith.refl_apply, unitInterval.coe_toNNReal, Path.source, Path.coe_toContinuousMap, bernsteinApproximation_uniform, ContinuousMap.Homotopy.map_one_left, ContinuousMap.Homotopy.apply_one, GenLoop.Homotopic.equiv, Path.truncate_const_continuous_family, unitInterval.measurableEmbedding_coe, unitInterval.sigmoid_monotone, Path.Homotopy.trans_refl_reparam, ContinuousMap.Homotopy.congr_fun, Path.extend_extends', unitInterval.instNoAtomsElemRealVolume, Path.truncate_continuous_family, unitInterval.nonneg, ContinuousMap.HomotopyWith.symm_apply, ContinuousMap.HomotopyWith.continuous, unitInterval.one_minus_nonneg, unitInterval.symm_lt_symm, ContinuousMap.Homotopy.ext_iff, Path.delayReflRight_one, ContinuousMap.HomotopyRel.cast_apply, Path.subpathAux_zero, ContinuousMap.HomotopyWith.coe_toHomotopy, Path.Homotopy.eval_one, ContinuousMap.HomotopyRel.eq_fst, Path.target, unitInterval.instNontrivialElemReal, Path.Homotopy.source, polynomialFunctions_closure_eq_top', bernstein.z_last, bernstein.probability, completelyRegularSpace_iff, unitInterval.univ_eq_Icc, unitInterval.subtype_Iic_eq_Icc, unitInterval.eq_closedBall, ContinuousMap.HomotopyWith.apply_zero, unitInterval.half_le_symm_iff, ContinuousMap.Homotopy.refl_apply, ContinuousMap.HomotopyWith.cast_apply, unitInterval.sigmoid_pos, unitInterval.symm_involutive, Path.subpath_zero_one, unitInterval.volume_uIoc, Topology.isEmbedding_sigmoid, Path.segment_apply, Path.Homotopy.symmβ‚‚_apply, unitInterval.add_pos, ContDiffPointwiseHolderAt.zero_exponent_iff, unitInterval.tendsto_sigmoid_atBot, ContinuousMap.Homotopy.curry_one, unitInterval.subtype_Ioi_eq_Ioc, ContinuousMap.HomotopyRel.pi_apply, unitInterval.two_mul_sub_one_mem_iff, unitInterval.symm_eq_one, Path.Homotopy.refl_apply, unitInterval.symm_bijective, Path.symm_range, unitInterval.sigmoid_lt_one, ContDiffPointwiseHolderAt.zero_order_iff, GenLoop.boundary, GenLoop.homotopyFrom_apply, GenLoop.const_apply, GenLoop.fromLoop_coe, unitInterval.sigmoid_le, unitInterval.qRight_one_right, GenLoop.homotopicTo, GenLoop.continuous_toLoop, ContinuousMap.Homotopy.congr_arg, unitInterval.le_symm_comm, GenLoop.fromLoop_trans_toLoop, Real.fromBinary_continuous, Unitary.path_apply, curveIntegralFun_def, Path.truncate_range, ContinuousMap.Homotopy.map_zero_left, unitInterval.continuous_symm, unitInterval.toNNReal_one, unitInterval.symm_symmMeasurableEquiv, Path.Homotopic.concat_subpath, Path.eqOn_extend_segment, GenLoop.instContinuousEvalConst, CompletelyRegularSpace.completely_regular_isOpen, unitInterval.volume_Iio, Set.Icc.convexCombo_zero, ContinuousMap.HomotopyRel.eq_snd, bernsteinApproximation.apply, ContinuousMap.Homotopy.curry_zero, Metric.PiNatEmbed.exists_embedding_to_hilbert_cube, polynomialFunctions.comap_compRightAlgHom_iccHomeoI, unitInterval.instConnectedSpaceElemReal, IsCoveringMap.liftPath_trans, isSimplyConnected_iff_exists_homotopy_refl_forall_mem, unitInterval.volume_Ioi

Theorems

NameKindAssumesProvesValidatesDepends On
affineHomeomorph_image_I πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
affineHomeomorph
LT.lt.ne
Set.Icc
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”LT.lt.ne
Set.image_congr
Set.image_affine_Icc'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
AddGroup.existsAddOfLE
MulZeroClass.mul_zero
zero_add
mul_one
exists_monotone_Icc_subset_open_cover_Icc πŸ“–mathematicalReal
Real.instLE
IsOpen
Set.Elem
Set.Icc
Real.instPreorder
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.instHasSubset
Set.univ
Set.iUnion
Monotone
Nat.instPreorder
Subtype.preorder
β€”lebesgue_number_lemma_of_metric
isCompact_univ
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Set.Icc.addNSMul_zero
Set.Icc.monotone_addNSMul
Real.instIsOrderedAddMonoid
LT.lt.le
Set.Icc.addNSMul_eq_right
Real.instArchimedean
LE.le.trans_lt
Set.Icc.abs_sub_addNSMul_le
half_lt_self
exists_monotone_Icc_subset_open_cover_unitInterval πŸ“–mathematicalIsOpen
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.instHasSubset
Set.univ
Set.iUnion
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Monotone
Nat.instPreorder
Subtype.preorder
Real.instPreorder
Set.Icc.instOne
Set.Icc
β€”Real.instIsOrderedRing
exists_monotone_Icc_subset_open_cover_Icc
zero_le_one
Real.instZeroLEOneClass
exists_monotone_Icc_subset_open_cover_unitInterval_prod_self πŸ“–mathematicalIsOpen
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.instHasSubset
Set.univ
Set.iUnion
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Monotone
Nat.instPreorder
Subtype.preorder
Real.instPreorder
Set.Icc.instOne
SProd.sprod
Set.instSProd
Set.Icc
β€”Real.instIsOrderedRing
lebesgue_number_lemma_of_metric
isCompact_univ
instCompactSpaceProd
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
zero_le_one
Real.instZeroLEOneClass
Set.Icc.addNSMul_zero
Set.Icc.monotone_addNSMul
Real.instIsOrderedAddMonoid
LT.lt.le
Set.Icc.addNSMul_eq_right
Real.instArchimedean
Metric.mem_ball
LE.le.trans_lt
max_le
Set.Icc.abs_sub_addNSMul_le
half_lt_self
iccHomeoI_apply_coe πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.Icc
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
Homeomorph
Set.Elem
instTopologicalSpaceSubtype
EquivLike.toFunLike
Homeomorph.instEquivLike
iccHomeoI
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”β€”
iccHomeoI_symm_apply_coe πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.Icc
DFunLike.coe
Homeomorph
Set.Elem
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instTopologicalSpaceSubtype
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
iccHomeoI
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”β€”
projIcc_eq_one πŸ“–mathematicalβ€”Set.projIcc
Real
Real.linearOrder
Real.instZero
Real.instOne
zero_le_one
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instZeroLEOneClass
Set.Elem
Set.Icc
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Real.instLE
β€”Set.projIcc_eq_right
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
projIcc_eq_zero πŸ“–mathematicalβ€”Set.projIcc
Real
Real.linearOrder
Real.instZero
Real.instOne
zero_le_one
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instZeroLEOneClass
Set.Elem
Set.Icc
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Real.instLE
β€”Set.projIcc_eq_left
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing

unitInterval

Definitions

NameCategoryTheorems
instLinearOrderedCommMonoidWithZeroElemReal πŸ“–CompOpβ€”
submonoid πŸ“–CompOp
2 mathmath: mem_unitIntervalSubmonoid, coe_unitIntervalSubmonoid
symmHomeomorph πŸ“–CompOp
2 mathmath: symmHomeomorph_apply, symmHomeomorph_symm_apply
termI πŸ“–CompOpβ€”
termΟƒ πŸ“–CompOpβ€”
toNNReal πŸ“–CompOp
11 mathmath: toNNReal_continuous, ProbabilityTheory.setBernoulli_singleton, toNNReal_zero, ProbabilityTheory.setBernoulli_apply', MeasureTheory.instIsProbabilityMeasureHAddMeasureHSMulNNRealToNNRealSymm, coe_toNNReal, toNNReal_symm_add_toNNReal, ProbabilityTheory.setBernoulli_apply, toNNReal_add_toNNReal_symm, toNNReal_one, ProbabilityTheory.setBernoulli_eq_map

Theorems

NameKindAssumesProvesValidatesDepends On
add_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instAdd
Set
Set.instMembership
unitInterval
β€”add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
nonneg
coe_lt_one πŸ“–mathematicalβ€”Real
Real.instLT
Set
Set.instMembership
unitInterval
Real.instOne
Set.Elem
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”β€”
coe_ne_one πŸ“–β€”β€”β€”β€”Iff.not
Real.instIsOrderedRing
Set.Icc.coe_eq_one
coe_ne_zero πŸ“–β€”β€”β€”β€”Iff.not
Real.instIsOrderedRing
Set.Icc.coe_eq_zero
coe_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Set
Set.instMembership
unitInterval
Set.Elem
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”β€”
coe_symm_eq πŸ“–mathematicalβ€”Real
Set
Set.instMembership
unitInterval
symm
Real.instSub
Real.instOne
β€”β€”
coe_toNNReal πŸ“–mathematicalβ€”NNReal.toReal
toNNReal
Real
Set
Set.instMembership
unitInterval
β€”β€”
coe_unitIntervalSubmonoid πŸ“–mathematicalβ€”SetLike.coe
Submonoid
Real
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
Submonoid.instSetLike
submonoid
unitInterval
β€”β€”
continuous_symm πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
symm
β€”Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuous_const
continuous_subtype_val
div_mem πŸ“–mathematicalReal
Real.instLE
Real.instZero
Set
Set.instMembership
unitInterval
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instZeroLEOneClass
eq_closedBall πŸ“–mathematicalβ€”unitInterval
Metric.closedBall
Real
Real.pseudoMetricSpace
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.Icc_eq_closedBall
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
eq_one_or_eq_zero_of_le_mul πŸ“–mathematicalSet.Elem
Real
unitInterval
Real.instLE
Set
Set.instMembership
Set.Icc.instMul
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instZero
Set.Icc.instOne
β€”Real.instIsOrderedRing
Mathlib.Tactic.Contrapose.contrapose₁
Subtype.coe_lt_coe
Set.Icc.coe_mul
one_mul
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
coe_pos
pos_iff_ne_zero
coe_lt_one
lt_one_iff_ne_one
fract_mem πŸ“–mathematicalβ€”Real
Set
Set.instMembership
unitInterval
Int.fract
Real.instRing
Real.linearOrder
Real.instFloorRing
β€”Int.fract_nonneg
Real.instIsStrictOrderedRing
LT.lt.le
Int.fract_lt_one
half_le_symm_iff πŸ“–mathematicalβ€”Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
Set.instMembership
unitInterval
symm
β€”Nat.instAtLeastTwoHAddOfNat
coe_symm_eq
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_comm
sub_half
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
image_coe_preimage_symm πŸ“–mathematicalβ€”Set.image
Real
Set
Set.instMembership
unitInterval
Set.preimage
Set.Elem
symm
Real.instSub
Real.instOne
β€”Set.image_image
Set.image_congr
instConnectedSpaceElemReal πŸ“–mathematicalβ€”ConnectedSpace
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”Subtype.connectedSpace
Set.nonempty_Icc
zero_le_one
Real.instZeroLEOneClass
isPreconnected_Icc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNontrivialElemReal πŸ“–mathematicalβ€”Nontrivial
Set.Elem
Real
unitInterval
β€”Real.instIsOrderedRing
one_ne_zero
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
le_one πŸ“–mathematicalβ€”Real
Real.instLE
Set
Set.instMembership
unitInterval
Real.instOne
β€”β€”
le_one' πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLE
Set
Set.instMembership
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”β€”
le_symm_comm πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLE
Set
Set.instMembership
symm
β€”symm_le_symm
symm_symm
lt_one_iff_ne_one πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLT
Set
Set.instMembership
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”lt_top_iff_ne_top
ZeroLEOneClass.factZeroLeOne
Real.instZeroLEOneClass
lt_symm_comm πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLT
Set
Set.instMembership
symm
β€”symm_lt_symm
symm_symm
mem_unitIntervalSubmonoid πŸ“–mathematicalβ€”Real
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
SetLike.instMembership
Submonoid.instSetLike
submonoid
Set
Set.instMembership
unitInterval
β€”β€”
mul_le_left πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLE
Set
Set.instMembership
Set.Icc.instMul
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
Subtype.coe_le_coe
mul_le_of_le_one_right
IsOrderedRing.toPosMulMono
mul_le_right πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLE
Set
Set.instMembership
Set.Icc.instMul
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
Subtype.coe_le_coe
mul_le_of_le_one_left
IsOrderedRing.toMulPosMono
mul_mem πŸ“–mathematicalReal
Set
Set.instMembership
unitInterval
Real.instMulβ€”mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
mul_le_oneβ‚€
IsOrderedRing.toMulPosMono
mul_pos_mem_iff πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instMembership
unitInterval
Real.instMul
Set.Icc
Real.instPreorder
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”nonneg_of_mul_nonneg_right
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_comm
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
LT.lt.le
nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
Set
Set.instMembership
unitInterval
β€”β€”
nonneg' πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLE
Set
Set.instMembership
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”β€”
one_mem πŸ“–mathematicalβ€”Real
Set
Set.instMembership
unitInterval
Real.instOne
β€”zero_le_one
Real.instZeroLEOneClass
le_rfl
one_minus_le_one πŸ“–mathematicalβ€”Real
Real.instLE
Real.instSub
Real.instOne
Set
Set.instMembership
unitInterval
β€”AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
one_minus_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
Real.instSub
Real.instOne
Set
Set.instMembership
unitInterval
β€”covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
pos_iff_ne_zero πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLT
Set
Set.instMembership
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”bot_lt_iff_ne_bot
ZeroLEOneClass.factZeroLeOne
Real.instZeroLEOneClass
prod_mem πŸ“–mathematicalReal
Set
Set.instMembership
unitInterval
Finset.prod
Real.instCommMonoid
β€”prod_mem
Submonoid.instSubmonoidClass
strictAnti_symm πŸ“–mathematicalβ€”StrictAnti
Set.Elem
Real
unitInterval
Subtype.preorder
Real.instPreorder
Set
Set.instMembership
symm
β€”sub_lt_sub_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
subtype_Ici_eq_Icc πŸ“–mathematicalβ€”Set.preimage
Real
Set
Set.instMembership
unitInterval
Set.Ici
Real.instPreorder
Set.Icc
Set.Elem
Subtype.preorder
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
Set.preimage_subtype_val_Ici
ZeroLEOneClass.factZeroLeOne
Real.instZeroLEOneClass
Set.Icc_top
subtype_Iic_eq_Icc πŸ“–mathematicalβ€”Set.preimage
Real
Set
Set.instMembership
unitInterval
Set.Iic
Real.instPreorder
Set.Icc
Set.Elem
Subtype.preorder
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
Set.preimage_subtype_val_Iic
ZeroLEOneClass.factZeroLeOne
Real.instZeroLEOneClass
Set.Icc_bot
subtype_Iio_eq_Ico πŸ“–mathematicalβ€”Set.preimage
Real
Set
Set.instMembership
unitInterval
Set.Iio
Real.instPreorder
Set.Ico
Set.Elem
Subtype.preorder
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
Set.preimage_subtype_val_Iio
ZeroLEOneClass.factZeroLeOne
Real.instZeroLEOneClass
Set.Ico_bot
subtype_Ioi_eq_Ioc πŸ“–mathematicalβ€”Set.preimage
Real
Set
Set.instMembership
unitInterval
Set.Ioi
Real.instPreorder
Set.Ioc
Set.Elem
Subtype.preorder
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
Set.preimage_subtype_val_Ioi
ZeroLEOneClass.factZeroLeOne
Real.instZeroLEOneClass
Set.Ioc_top
symmHomeomorph_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
symmHomeomorph
symm
β€”β€”
symmHomeomorph_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
symmHomeomorph
symm
β€”β€”
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
Set.Elem
Real
unitInterval
symm
β€”Function.Involutive.bijective
symm_involutive
symm_eq_one πŸ“–mathematicalβ€”symm
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instZero
β€”Real.instIsOrderedRing
symm_zero
symm_eq_zero πŸ“–mathematicalβ€”symm
Set.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
β€”Real.instIsOrderedRing
symm_one
symm_inj πŸ“–mathematicalβ€”symmβ€”Function.Bijective.injective
symm_bijective
symm_involutive πŸ“–mathematicalβ€”Function.Involutive
Set.Elem
Real
unitInterval
symm
β€”symm_symm
symm_le_comm πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLE
Set
Set.instMembership
symm
β€”symm_le_symm
symm_symm
symm_le_symm πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLE
Set
Set.instMembership
symm
β€”IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
symm_lt_comm πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLT
Set
Set.instMembership
symm
β€”symm_lt_symm
symm_symm
symm_lt_symm πŸ“–mathematicalβ€”Set.Elem
Real
unitInterval
Real.instLT
Set
Set.instMembership
symm
β€”IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
symm_one πŸ“–mathematicalβ€”symm
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instZero
β€”Real.instIsOrderedRing
sub_self
symm_projIcc πŸ“–mathematicalβ€”symm
Set.projIcc
Real
Real.linearOrder
Real.instZero
Real.instOne
zero_le_one
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instZeroLEOneClass
Real.instSub
β€”zero_le_one
Real.instZeroLEOneClass
le_total
Real.instIsOrderedRing
Set.projIcc_of_le_left
symm_zero
Set.projIcc_of_right_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
CanLift.prf
Subtype.canLift
Set.projIcc_val
symm_one
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
zero_add
symm_symm πŸ“–mathematicalβ€”symmβ€”sub_sub_cancel
Subtype.coe_eta
symm_zero πŸ“–mathematicalβ€”symm
Set.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
β€”Real.instIsOrderedRing
sub_zero
toNNReal_add_toNNReal_symm πŸ“–mathematicalβ€”NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
toNNReal
symm
instOneNNReal
β€”NNReal.eq
add_sub_cancel
toNNReal_continuous πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
NNReal
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NNReal.instTopologicalSpace
toNNReal
β€”continuous_subtype_val
toNNReal_one πŸ“–mathematicalβ€”toNNReal
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
NNReal
instOneNNReal
β€”Real.instIsOrderedRing
toNNReal_symm_add_toNNReal πŸ“–mathematicalβ€”NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
toNNReal
symm
instOneNNReal
β€”NNReal.eq
sub_add_cancel
toNNReal_zero πŸ“–mathematicalβ€”toNNReal
Set.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
NNReal
instZeroNNReal
β€”Real.instIsOrderedRing
two_mul_sub_one_mem_iff πŸ“–mathematicalβ€”Real
Set
Set.instMembership
unitInterval
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instOne
Set.Icc
Real.instPreorder
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Nat.instAtLeastTwoHAddOfNat
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Meta.NormNum.isNat_add
univ_eq_Icc πŸ“–mathematicalβ€”Set.univ
Set.Elem
Real
unitInterval
Set.Icc
Subtype.preorder
Real.instPreorder
Set
Set.instMembership
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
β€”ZeroLEOneClass.factZeroLeOne
Real.instZeroLEOneClass
Set.Icc_bot_top
zero_mem πŸ“–mathematicalβ€”Real
Set
Set.instMembership
unitInterval
Real.instZero
β€”le_rfl
zero_le_one
Real.instZeroLEOneClass

---

← Back to Index