Documentation Verification Report

UrysohnsLemma

πŸ“ Source: Mathlib/Topology/UrysohnsLemma.lean

Statistics

MetricCount
DefinitionsCU, C, U, approx, left, lim, right
7
TheoremsP_C_U, approx_le_approx_of_U_sub_C, approx_le_lim, approx_le_one, approx_le_succ, approx_mem_Icc_right_left, approx_mono, approx_nonneg, approx_of_mem_C, approx_of_notMem_U, bddAbove_range_approx, closed_C, continuous_lim, disjoint_C_support_lim, hP, left_C, left_U_subset, left_U_subset_right_C, lim_eq_midpoint, lim_le_one, lim_mem_Icc, lim_nonneg, lim_of_mem_C, lim_of_notMem_U, open_U, right_U, subset, subset_right_C, tendsto_approx_atTop, exists_continuousMap_one_of_isCompact_subset_isOpen, exists_continuous_nonneg_pos, exists_continuous_one_zero_of_isCompact, exists_continuous_one_zero_of_isCompact_of_isGΞ΄, exists_continuous_zero_one_of_isClosed, exists_continuous_zero_one_of_isCompact, exists_continuous_zero_one_of_isCompact', exists_tsupport_one_of_isOpen_isClosed
37
Total44

Urysohns

Definitions

NameCategoryTheorems
CU πŸ“–CompDataβ€”

Urysohns.CU

Definitions

NameCategoryTheorems
C πŸ“–CompOp
7 mathmath: subset_right_C, closed_C, left_U_subset_right_C, P_C_U, left_C, disjoint_C_support_lim, subset
U πŸ“–CompOp
6 mathmath: left_U_subset_right_C, right_U, P_C_U, open_U, subset, left_U_subset
approx πŸ“–CompOp
11 mathmath: approx_of_mem_C, approx_le_succ, approx_nonneg, approx_mono, bddAbove_range_approx, approx_mem_Icc_right_left, approx_le_one, approx_le_approx_of_U_sub_C, approx_of_notMem_U, approx_le_lim, tendsto_approx_atTop
left πŸ“–CompOp
5 mathmath: left_U_subset_right_C, approx_mem_Icc_right_left, left_C, left_U_subset, lim_eq_midpoint
lim πŸ“–CompOp
10 mathmath: lim_le_one, lim_of_mem_C, continuous_lim, lim_of_notMem_U, disjoint_C_support_lim, lim_nonneg, lim_mem_Icc, lim_eq_midpoint, approx_le_lim, tendsto_approx_atTop
right πŸ“–CompOp
5 mathmath: subset_right_C, left_U_subset_right_C, approx_mem_Icc_right_left, right_U, lim_eq_midpoint

Theorems

NameKindAssumesProvesValidatesDepends On
P_C_U πŸ“–mathematicalβ€”C
U
β€”β€”
approx_le_approx_of_U_sub_C πŸ“–mathematicalSet
Set.instHasSubset
U
C
Real
Real.instLE
approx
β€”approx_of_mem_C
approx_nonneg
approx_le_one
approx_of_notMem_U
approx_le_lim πŸ“–mathematicalβ€”Real
Real.instLE
approx
lim
β€”le_ciSup
bddAbove_range_approx
approx_le_one πŸ“–mathematicalβ€”Real
Real.instLE
approx
Real.instOne
β€”Set.indicator_apply_le'
le_rfl
zero_le_one
Real.instZeroLEOneClass
Nat.instAtLeastTwoHAddOfNat
midpoint_eq_smul_add
invOf_eq_inv
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
div_le_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
zero_lt_two
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
approx_le_succ πŸ“–mathematicalβ€”Real
Real.instLE
approx
β€”Real.instIsStrictOrderedRing
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsStrictOrderedModule
PosSMulReflectLT.toPosSMulReflectLE
Real.instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
PosSMulMono.toPosSMulReflectLT
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
approx_mem_Icc_right_left
approx.eq_2
midpoint_le_midpoint
approx_mem_Icc_right_left πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Icc
Real.instPreorder
approx
right
left
β€”le_rfl
le_imp_le_of_le_of_le
le_refl
Set.indicator_le_indicator_apply_of_subset
Set.compl_subset_compl_of_subset
left_U_subset
Pi.one_apply
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
midpoint_le_midpoint
Real.instIsStrictOrderedRing
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsStrictOrderedModule
approx_le_approx_of_U_sub_C
subset_closure
approx_mono πŸ“–mathematicalβ€”Monotone
Real
Nat.instPreorder
Real.instPreorder
approx
β€”monotone_nat_of_le_succ
approx_le_succ
approx_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
approx
β€”Set.indicator_nonneg
zero_le_one
Real.instZeroLEOneClass
Nat.instAtLeastTwoHAddOfNat
midpoint_eq_smul_add
invOf_eq_inv
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
zero_le_two
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_nonneg
approx_of_mem_C πŸ“–mathematicalSet
Set.instMembership
C
approx
Real
Real.instZero
β€”Set.indicator_of_notMem
subset
subset_right_C
midpoint_self
approx_of_notMem_U πŸ“–mathematicalSet
Set.instMembership
U
approx
Real
Real.instOne
β€”Set.indicator_of_mem
Set.mem_compl_iff
left_U_subset
midpoint_self
bddAbove_range_approx πŸ“–mathematicalβ€”BddAbove
Real
Real.instLE
Set.range
approx
β€”approx_le_one
closed_C πŸ“–mathematicalβ€”IsClosed
C
β€”β€”
continuous_lim πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
lim
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNNRat_lt_true
Real.instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Nat.cast_one
continuous_iff_continuousAt
Filter.HasBasis.tendsto_right_iff
Metric.nhds_basis_closedBall_pow
LT.lt.trans
Filter.univ_mem'
pow_zero
Real.dist_le_of_mem_Icc_01
lim_mem_Icc
Filter.mp_mem
IsOpen.mem_nhds
open_U
pow_succ'
lim_eq_midpoint
lim_of_mem_C
left_U_subset_right_C
LE.le.trans
dist_midpoint_midpoint_le
dist_self
add_zero
div_eq_inv_mul
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
le_of_lt
dist_nonneg
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Set.compl_subset_compl
subset
isOpen_compl_iff
closed_C
lim_of_notMem_U
pow_succ
le_imp_le_of_le_of_le
le_refl
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_add
add_le_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
disjoint_C_support_lim πŸ“–mathematicalβ€”Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
C
Function.support
Real
Real.instZero
lim
β€”Function.disjoint_support_iff
lim_of_mem_C
hP πŸ“–mathematicalIsOpen
Set
Set.instHasSubset
closureβ€”β€”
left_C πŸ“–mathematicalβ€”C
left
β€”β€”
left_U_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
U
left
β€”Set.Subset.trans
left_U_subset_right_C
subset
left_U_subset_right_C πŸ“–mathematicalβ€”Set
Set.instHasSubset
U
left
C
right
β€”subset_closure
lim_eq_midpoint πŸ“–mathematicalβ€”lim
midpoint
Real
Real.instRing
invertibleTwo
Semifield.toDivisionSemiring
Field.toSemifield
Real.instField
IsStrictOrderedRing.toCharZero
DivisionSemiring.toSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
NormedAddTorsor.toAddTorsor
SeminormedAddCommGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toNormedAddTorsor
left
right
β€”tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_approx_atTop
Filter.tendsto_add_atTop_iff_nat
Filter.Tendsto.midpoint
instIsTopologicalAddTorsor_1
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
lim_le_one πŸ“–mathematicalβ€”Real
Real.instLE
lim
Real.instOne
β€”ciSup_le
approx_le_one
lim_mem_Icc πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instZero
Real.instOne
lim
β€”lim_nonneg
lim_le_one
lim_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
lim
β€”LE.le.trans
approx_nonneg
approx_le_lim
lim_of_mem_C πŸ“–mathematicalSet
Set.instMembership
C
lim
Real
Real.instZero
β€”approx_of_mem_C
ciSup_const
lim_of_notMem_U πŸ“–mathematicalSet
Set.instMembership
U
lim
Real
Real.instOne
β€”approx_of_notMem_U
ciSup_const
open_U πŸ“–mathematicalβ€”IsOpen
U
β€”β€”
right_U πŸ“–mathematicalβ€”U
right
β€”β€”
subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
C
U
β€”β€”
subset_right_C πŸ“–mathematicalβ€”Set
Set.instHasSubset
C
right
β€”Set.Subset.trans
subset
left_U_subset_right_C
tendsto_approx_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
approx
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
lim
β€”tendsto_atTop_ciSup
LinearOrder.supConvergenceClass
instOrderTopologyReal
approx_mono
approx_le_one

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_continuousMap_one_of_isCompact_subset_isOpen πŸ“–mathematicalIsCompact
IsOpen
Set
Set.instHasSubset
Set.EqOn
Real
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Pi.instOne
Real.instOne
tsupport
Real.instZero
Set.instMembership
Set.Icc
Real.instPreorder
β€”exists_open_between_and_isCompact_closure
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
exists_tsupport_one_of_isOpen_isClosed
isClosed_closure
IsCompact.closure_subset_of_isOpen
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
Set.EqOn.mono
IsCompact.of_isClosed_subset
exists_continuous_nonneg_pos πŸ“–mathematicalβ€”HasCompactSupport
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Pi.hasLe
Real.instLE
Pi.instZero
β€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
exists_continuous_one_zero_of_isCompact
isClosed_empty
Set.disjoint_empty
mem_of_mem_nhds
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
exists_continuous_one_zero_of_isCompact πŸ“–mathematicalIsCompact
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.EqOn
Real
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Pi.instOne
Real.instOne
Pi.instZero
Real.instZero
HasCompactSupport
Set.instMembership
Set.Icc
Real.instPreorder
β€”exists_compact_closed_between
IsClosed.isOpen_compl
Disjoint.subset_compl_left
Disjoint.symm
exists_continuous_zero_one_of_isCompact
IsOpen.isClosed_compl
isOpen_interior
Set.disjoint_compl_right_iff_subset
Set.subset_compl_comm
HasSubset.Subset.trans
Set.instIsTransSubset
interior_subset
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuous_const
HasCompactSupport.intro'
Mathlib.Tactic.Contrapose.contraposeβ‚‚
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
AddGroup.toOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
exists_continuous_one_zero_of_isCompact_of_isGΞ΄ πŸ“–mathematicalIsCompact
IsGΞ΄
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.preimage
Real
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Set.instSingletonSet
Real.instOne
Set.EqOn
Pi.instZero
Real.instZero
HasCompactSupport
Set.instMembership
Set.Icc
Real.instPreorder
β€”IsGΞ΄.eq_iInter_nat
exists_compact_closed_between
IsClosed.isOpen_compl
Disjoint.subset_compl_left
Disjoint.symm
exists_continuous_one_zero_of_isCompact
IsOpen.isClosed_compl
IsOpen.inter
isOpen_interior
Set.disjoint_compl_right_iff_subset
Set.subset_inter
HasSubset.Subset.trans
Set.instIsTransSubset
Eq.subset
Set.instReflSubset
Set.iInter_subset
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
summable_geometric_two'
tsum_geometric_two'
Set.inter_subset_right
interior_subset
MulZeroClass.mul_zero
tsum_zero
mul_le_of_le_one_right
IsOrderedRing.toPosMulMono
LT.lt.le
Summable.of_nonneg_of_le
mul_nonneg
continuous_tsum
Real.instCompleteSpace
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.fst
continuous_id'
Continuous.snd
Continuous.prodMk
continuous_const
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
norm_mul
NormedDivisionRing.toNormMulClass
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Set.Subset.antisymm
mul_one
Set.compl_subset_compl
Set.compl_iInter
lt_of_lt_of_le
Summable.tsum_lt_tsum
instIsTopologicalAddGroupReal
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
Eq.le
LT.lt.ne
Set.EqOn.mono
Set.subset_compl_comm
HasCompactSupport.of_support_subset_isCompact
instR1Space
Function.support_subset_iff'
tsum_nonneg
le_trans
Summable.tsum_le_tsum
exists_continuous_zero_one_of_isClosed πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.EqOn
Real
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Pi.instZero
Real.instZero
Pi.instOne
Real.instOne
Set.instMembership
Set.Icc
Real.instPreorder
β€”IsClosed.isOpen_compl
Set.disjoint_left
normal_exists_closure_subset
Urysohns.CU.continuous_lim
Urysohns.CU.lim_of_mem_C
Urysohns.CU.lim_of_notMem_U
Urysohns.CU.lim_mem_Icc
exists_continuous_zero_one_of_isCompact πŸ“–mathematicalIsCompact
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.EqOn
Real
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Pi.instZero
Real.instZero
Pi.instOne
Real.instOne
Set.instMembership
Set.Icc
Real.instPreorder
β€”exists_compact_closed_between
IsClosed.isOpen_compl
Disjoint.subset_compl_left
Disjoint.symm
IsClosed.closure_subset_iff
interior_subset
isOpen_interior
HasSubset.Subset.trans
Set.instIsTransSubset
IsCompact.of_isClosed_subset
isClosed_closure
Urysohns.CU.continuous_lim
Urysohns.CU.lim_of_mem_C
Urysohns.CU.lim_of_notMem_U
Urysohns.CU.lim_mem_Icc
exists_continuous_zero_one_of_isCompact' πŸ“–mathematicalIsCompact
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.EqOn
Real
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Pi.instZero
Real.instZero
Pi.instOne
Real.instOne
Set.instMembership
Set.Icc
Real.instPreorder
β€”exists_continuous_zero_one_of_isCompact
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
sub_eq_zero_of_eq
Set.EqOn.symm
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
AddGroup.toOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
exists_tsupport_one_of_isOpen_isClosed πŸ“–mathematicalIsOpen
IsCompact
closure
Set
Set.instHasSubset
tsupport
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Set.EqOn
Pi.instOne
Real.instOne
Set.instMembership
Set.Icc
Real.instPreorder
β€”SeparatedNhds.of_isClosed_isCompact_closure_compl_isClosed
isClosed_compl_iff
compl_compl
HasSubset.Subset.disjoint_compl_left
closure_minimal
Set.subset_compl_iff_disjoint_right
IsOpen.isClosed_compl
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
isClosed_closure
IsClosed.isOpen_compl
Set.subset_compl_comm
Set.Subset.trans
IsCompact.of_isClosed_subset
closure_mono
Set.compl_subset_compl
HasSubset.Subset.disjoint_compl_right
Set.compl_subset_comm
Urysohns.CU.continuous_lim
IsClosed.closure_eq
Disjoint.subset_compl_right
Set.disjoint_of_subset_right
Disjoint.symm
Urysohns.CU.disjoint_C_support_lim
Urysohns.CU.lim_of_notMem_U
Set.notMem_compl_iff
Urysohns.CU.lim_mem_Icc

---

← Back to Index