def
QuotientGroup.continuousMulEquiv
{G : Type u_1}
{H : Type u_2}
[Group G]
(N : Subgroup G)
[N.Normal]
[Group H]
(M : Subgroup H)
[M.Normal]
[TopologicalSpace G]
[TopologicalSpace H]
(e : G ≃ₜ* H)
(h : Subgroup.map (↑e) N = M)
:
Equations
Instances For
def
QuotientAddGroup.continuousAddEquiv
{G : Type u_1}
{H : Type u_2}
[AddGroup G]
(N : AddSubgroup G)
[N.Normal]
[AddGroup H]
(M : AddSubgroup H)
[M.Normal]
[TopologicalSpace G]
[TopologicalSpace H]
(e : G ≃ₜ+ H)
(h : AddSubgroup.map (↑e) N = M)
:
Equations
Instances For
theorem
QuotientGroup.isOpenQuotientMap_rightrel_mk
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[ContinuousMul G]
(H : Subgroup G)
:
IsOpenQuotientMap (Quot.mk ⇑(rightRel H))