Documentation Verification Report

Ring

πŸ“ Source: FLT/HaarMeasure/HaarChar/Ring.lean

Statistics

MetricCount
DefinitionsmulLeft, mulRight, ringHaarChar, ringHaarChar_ker
4
TheoremsmulLeft_apply, mulRight_apply, preimage_mulLeft_smul, mem_ringHaarChar_ker, ringHaarChar_ModuleFinite, ringHaarChar_ModuleFinite_unit, ringHaarChar_apply, ringHaarChar_continuous, ringHaarChar_eq_of_measure_smul_eq_mul, ringHaarChar_eq_ringHaarChar_of_continuousAlgEquiv, ringHaarChar_mul_integral, ringHaarChar_mul_volume, ringHaarChar_pi, ringHaarChar_pi', ringHaarChar_prod, ringHaarChar_prod', ringHaarChar_restrictedProduct, ringHaarChar_toFun
18
Total22

ContinuousAddEquiv

Definitions

NameCategoryTheorems
mulLeft πŸ“–CompOp
11 mathmath: MeasureTheory.ringHaarChar_apply, preimage_mulLeft_smul, localcomponent_mulLeft, NumberField.InfiniteAdeleRing.isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul, NumberField.FiniteAdeleRing.tensor_isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, NumberField.AdeleRing.isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, mulLeft_apply, NumberField.FiniteAdeleRing.isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, NumberField.InfiniteAdeleRing.isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul_aux, MeasureTheory.ringHaarChar_continuous, MeasureTheory.ringHaarChar_toFun
mulRight πŸ“–CompOp
9 mathmath: IsSimpleRing.ringHaarChar_eq_addEquivAddHaarChar_mulRight, localcomponent_mulRight, mulRight_apply, NumberField.InfiniteAdeleRing.isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul, NumberField.FiniteAdeleRing.tensor_isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, NumberField.AdeleRing.isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, NumberField.AdeleRing.addEquivAddHaarChar_mulRight_unit_eq_one, NumberField.FiniteAdeleRing.isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, NumberField.InfiniteAdeleRing.isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul_aux

Theorems

NameKindAssumesProvesValidatesDepends On
mulLeft_apply πŸ“–mathematicalβ€”mulLeftβ€”β€”
mulRight_apply πŸ“–mathematicalβ€”mulRightβ€”β€”
preimage_mulLeft_smul πŸ“–mathematicalβ€”mulLeftβ€”β€”

MeasureTheory

Definitions

NameCategoryTheorems
ringHaarChar πŸ“–CompOp
30 mathmath: ringHaarChar_apply, ringHaarChar_prod, IsSimpleRing.ringHaarChar_eq_addEquivAddHaarChar_mulRight, mem_ringHaarChar_ker, ringHaarChar_restrictedProduct, ringHaarChar_adeles_rat, NumberField.AdeleRing.DivisionAlgebra.Aux.ringHaarChar_D𝔸, addEquivAddHaarChar_eq_ringHaarChar_det_of_existsListTransvecEtc, ringHaarChar_eq_of_measure_smul_eq_mul, addEquivAddHaarChar_eq_ringHaarChar_det_pi, ringHaarChar_pi, ringHaarChar_ModuleFinite, ringHaarChar_pi', ringHaarChar_complex, addEquivAddHaarChar_eq_ringHaarChar_det, addEquivAddHaarChar_eq_ringHaarChar_det_diagonal, ringHaarChar_real, addEquivAddHaarChar_eq_ringHaarChar_det_matrix_pi, ringHaarChar_adeles_units_rat_eq_one, NumberField.AdeleRing.DivisionAlgebra.Aux.ringHaarChar_D𝔸_prodRight_units_aux, ringHaarChar_padic, ringHaarChar_mul_integral, ringHaarChar_mul_volume, NumberField.AdeleRing.DivisionAlgebra.Aux.ringHaarChar_D𝔸_real_surjective, ringHaarChar_padicInt, ringHaarChar_ModuleFinite_unit, algebra_ringHaarChar_eq_ringHaarChar_det, ringHaarChar_prod', ringHaarChar_toFun, ringHaarChar_eq_ringHaarChar_of_continuousAlgEquiv
ringHaarChar_ker πŸ“–CompOp
11 mathmath: mem_ringHaarChar_ker, NumberField.AdeleRing.DivisionAlgebra.Aux.incl_D𝔸quot_surjective, NumberField.AdeleRing.DivisionAlgebra.Aux.incl_D𝔸quot_continuous, NumberField.AdeleRing.DivisionAlgebra.Aux.toQuot_cont, NumberField.AdeleRing.units_mem_ringHaarCharacter_ker, NumberField.AdeleRing.DivisionAlgebra.Aux.toQuot_surjective, NumberField.AdeleRing.DivisionAlgebra.compact_quotient, NumberField.AdeleRing.DivisionAlgebra.Aux.rest₁_surjective, NumberField.AdeleRing.DivisionAlgebra.Aux.rest₁_continuous, NumberField.AdeleRing.DivisionAlgebra.Aux.M_compact, NumberField.AdeleRing.DivisionAlgebra.Aux.inclβ‚‚_isClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
mem_ringHaarChar_ker πŸ“–mathematicalβ€”ringHaarChar_ker
ringHaarChar
β€”β€”
ringHaarChar_ModuleFinite πŸ“–mathematicalβ€”ringHaarCharβ€”addEquivAddHaarChar_eq_addEquivAddHaarChar_of_continuousAddEquiv
ringHaarChar_ModuleFinite_unit πŸ“–mathematicalβ€”ringHaarCharβ€”ringHaarChar_ModuleFinite
ringHaarChar_pi
ringHaarChar_apply πŸ“–mathematicalβ€”ringHaarChar
ContinuousAddEquiv.mulLeft
β€”β€”
ringHaarChar_continuous πŸ“–mathematicalβ€”ContinuousAddEquiv.mulLeftβ€”β€”
ringHaarChar_eq_of_measure_smul_eq_mul πŸ“–mathematicalβ€”ringHaarCharβ€”ringHaarChar_mul_volume
ringHaarChar_eq_ringHaarChar_of_continuousAlgEquiv πŸ“–mathematicalβ€”ringHaarCharβ€”addEquivAddHaarChar_eq_addEquivAddHaarChar_of_continuousAddEquiv
ringHaarChar_mul_integral πŸ“–mathematicalβ€”ringHaarCharβ€”β€”
ringHaarChar_mul_volume πŸ“–mathematicalβ€”ringHaarCharβ€”ringHaarChar_toFun
ContinuousAddEquiv.preimage_mulLeft_smul
ringHaarChar_pi πŸ“–mathematicalβ€”ringHaarCharβ€”addEquivAddHaarChar_piCongrRight
ringHaarChar_pi' πŸ“–mathematicalβ€”ringHaarCharβ€”addEquivAddHaarChar_piCongrRight
ringHaarChar_prod πŸ“–mathematicalβ€”ringHaarCharβ€”addEquivAddHaarChar_prodCongr
ringHaarChar_prod' πŸ“–mathematicalβ€”ringHaarCharβ€”ringHaarChar_prod
ringHaarChar_restrictedProduct πŸ“–mathematicalβ€”ringHaarChar
instMeasurableSpaceRestrictedProduct_fLT
instBorelSpaceRestrictedProduct_fLT
MulEquiv.restrictedProductUnits
β€”instBorelSpaceRestrictedProduct_fLT
addEquivAddHaarChar_restrictedProductCongrRight
ringHaarChar_toFun πŸ“–mathematicalβ€”ringHaarChar
ContinuousAddEquiv.mulLeft
β€”β€”

---

← Back to Index