def
ContinuousAddEquiv.mulLeft
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
(r : Rˣ)
:
The additive homeomorphism from a topological ring to itself, induced by left multiplication by a unit.
Equations
Instances For
@[simp]
theorem
ContinuousAddEquiv.mulLeft_apply
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
(r : Rˣ)
(x : R)
:
def
ContinuousAddEquiv.mulRight
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
(r : Rˣ)
:
The additive homeomorphism from a topological ring to itself, induced by right multiplication by a unit.
Equations
Instances For
@[simp]
theorem
ContinuousAddEquiv.mulRight_apply
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
(r : Rˣ)
(x : R)
:
@[simp]
theorem
ContinuousAddEquiv.preimage_mulLeft_smul
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
(r : Rˣ)
(s : Set R)
:
theorem
MeasureTheory.ringHaarChar_continuous
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
:
Continuous fun (u : Rˣ) => addEquivAddHaarChar (ContinuousAddEquiv.mulLeft u)
noncomputable def
MeasureTheory.ringHaarChar
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
:
ringHaarChar : Rˣ →ₜ* ℝ≥0 is the function sending a unit of
a locally compact topological ring R to the positive real factor
which left multiplication by the unit scales additive Haar measure by.
Equations
Instances For
theorem
MeasureTheory.ringHaarChar_toFun
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
(r : Rˣ)
:
theorem
MeasureTheory.ringHaarChar_apply
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
(r : Rˣ)
:
theorem
MeasureTheory.ringHaarChar_eq_ringHaarChar_of_continuousAlgEquiv
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
{S : Type u_2}
[Ring S]
[TopologicalSpace S]
[IsTopologicalRing S]
[LocallyCompactSpace S]
[MeasurableSpace S]
[BorelSpace S]
(f : R ≃A[ℤ] S)
(r : Rˣ)
:
Transport ringHaarChar across a continuous ℤ-algebra equivalence
(in place of continuous ring equivalences since we don't have them).
theorem
MeasureTheory.ringHaarChar_mul_integral
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
(μ : Measure R)
[μ.IsAddHaarMeasure]
[μ.Regular]
{f : R → ℝ}
(hf : Measurable f)
(u : Rˣ)
:
theorem
MeasureTheory.ringHaarChar_mul_volume
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
(μ : Measure R)
[μ.IsAddHaarMeasure]
[μ.Regular]
{X : Set R}
(u : Rˣ)
:
theorem
MeasureTheory.ringHaarChar_eq_of_measure_smul_eq_mul
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
{μ : Measure R}
[μ.IsAddHaarMeasure]
[μ.Regular]
{s : Set R}
(hs₀ : μ s ≠ 0)
(hs : μ s ≠ ⊤)
{r : NNReal}
{u : Rˣ}
(hμgs : μ (u • s) = ↑r * μ s)
:
noncomputable def
MeasureTheory.ringHaarChar_ker
(R : Type u_1)
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
:
The kernel of the ringHaarChar : Rˣ → ℝ≥0, namely the units
of a locally compact topological ring such that left multiplication
by them does not change additive Haar measure.
Equations
Instances For
theorem
MeasureTheory.mem_ringHaarChar_ker
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
(x : Rˣ)
:
theorem
MeasureTheory.ringHaarChar_prod
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
{S : Type u_2}
[Ring S]
[TopologicalSpace S]
[IsTopologicalRing S]
[LocallyCompactSpace S]
[MeasurableSpace S]
[BorelSpace S]
(u : Rˣ)
(v : Sˣ)
[SecondCountableTopologyEither R S]
:
theorem
MeasureTheory.ringHaarChar_prod'
{R : Type u_1}
[Ring R]
[TopologicalSpace R]
[IsTopologicalRing R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
{S : Type u_2}
[Ring S]
[TopologicalSpace S]
[IsTopologicalRing S]
[LocallyCompactSpace S]
[MeasurableSpace S]
[BorelSpace S]
(uv : (R × S)ˣ)
[SecondCountableTopologyEither R S]
:
theorem
MeasureTheory.ringHaarChar_pi
{ι : Type u_2}
{A : ι → Type u_3}
[(i : ι) → Ring (A i)]
[(i : ι) → TopologicalSpace (A i)]
[∀ (i : ι), IsTopologicalRing (A i)]
[∀ (i : ι), LocallyCompactSpace (A i)]
[(i : ι) → MeasurableSpace (A i)]
[∀ (i : ι), BorelSpace (A i)]
[Fintype ι]
[∀ (i : ι), SecondCountableTopology (A i)]
(u : (i : ι) → (A i)ˣ)
:
theorem
MeasureTheory.ringHaarChar_pi'
{ι : Type u_2}
{A : ι → Type u_3}
[(i : ι) → Ring (A i)]
[(i : ι) → TopologicalSpace (A i)]
[∀ (i : ι), IsTopologicalRing (A i)]
[∀ (i : ι), LocallyCompactSpace (A i)]
[(i : ι) → MeasurableSpace (A i)]
[∀ (i : ι), BorelSpace (A i)]
[Fintype ι]
[∀ (i : ι), SecondCountableTopology (A i)]
(u : ((i : ι) → A i)ˣ)
:
theorem
MeasureTheory.ringHaarChar_restrictedProduct
{ι : Type u_2}
{A : ι → Type u_3}
[(i : ι) → Ring (A i)]
[(i : ι) → TopologicalSpace (A i)]
[∀ (i : ι), IsTopologicalRing (A i)]
[∀ (i : ι), LocallyCompactSpace (A i)]
[(i : ι) → MeasurableSpace (A i)]
[∀ (i : ι), BorelSpace (A i)]
{C : (i : ι) → Subring (A i)}
[hCopen : Fact (∀ (i : ι), IsOpen ↑(C i))]
[hCcompact : ∀ (i : ι), CompactSpace ↥(C i)]
[∀ (i : ι), SecondCountableTopology (A i)]
[Countable ι]
(u : (RestrictedProduct (fun (i : ι) => A i) (fun (i : ι) => ↑(C i)) Filter.cofinite)ˣ)
:
theorem
MeasureTheory.ringHaarChar_ModuleFinite
{K : Type u_2}
{R : Type u_3}
[Field K]
[Ring R]
[Algebra K R]
[Module.Finite K R]
[TopologicalSpace K]
[TopologicalSpace R]
[IsTopologicalRing R]
[IsModuleTopology K R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
[IsTopologicalRing K]
[LocallyCompactSpace K]
[MeasurableSpace K]
[BorelSpace K]
[SecondCountableTopology K]
(t : Kˣ)
:
ringHaarChar ((Units.map ↑(algebraMap K R)) t) = ringHaarChar ((Units.map ↑(algebraMap K (Fin (Module.finrank K R) → K))) t)
theorem
MeasureTheory.ringHaarChar_ModuleFinite_unit
{K : Type u_2}
{R : Type u_3}
[Field K]
[Ring R]
[Algebra K R]
[Module.Finite K R]
[TopologicalSpace K]
[TopologicalSpace R]
[IsTopologicalRing R]
[IsModuleTopology K R]
[LocallyCompactSpace R]
[MeasurableSpace R]
[BorelSpace R]
[IsTopologicalRing K]
[LocallyCompactSpace K]
[MeasurableSpace K]
[BorelSpace K]
[SecondCountableTopology K]
(t : Kˣ)
: