Documentation

FLT.HaarMeasure.HaarChar.Ring

The additive homeomorphism from a topological ring to itself, induced by left multiplication by a unit.

Equations
    Instances For
      @[simp]
      theorem ContinuousAddEquiv.mulLeft_apply {R : Type u_1} [Ring R] [TopologicalSpace R] [IsTopologicalRing R] (r : Rˣ) (x : R) :
      (mulLeft r) x = r * x

      The additive homeomorphism from a topological ring to itself, induced by right multiplication by a unit.

      Equations
        Instances For
          @[simp]
          theorem ContinuousAddEquiv.mulRight_apply {R : Type u_1} [Ring R] [TopologicalSpace R] [IsTopologicalRing R] (r : Rˣ) (x : R) :
          (mulRight r) x = x * r

          ringHaarChar : Rˣ →ₜ* ℝ≥0 is the function sending a unit of a locally compact topological ring R to the positive real factor which left multiplication by the unit scales additive Haar measure by.

          Equations
            Instances For

              Transport ringHaarChar across a continuous -algebra equivalence (in place of continuous ring equivalences since we don't have them).

              theorem MeasureTheory.ringHaarChar_mul_integral {R : Type u_1} [Ring R] [TopologicalSpace R] [IsTopologicalRing R] [LocallyCompactSpace R] [MeasurableSpace R] [BorelSpace R] (μ : Measure R) [μ.IsAddHaarMeasure] [μ.Regular] {f : R} (hf : Measurable f) (u : Rˣ) :
              (ringHaarChar u) * (r : R), f (u * r) μ = (a : R), f a μ
              theorem MeasureTheory.ringHaarChar_eq_of_measure_smul_eq_mul {R : Type u_1} [Ring R] [TopologicalSpace R] [IsTopologicalRing R] [LocallyCompactSpace R] [MeasurableSpace R] [BorelSpace R] {μ : Measure R} [μ.IsAddHaarMeasure] [μ.Regular] {s : Set R} (hs₀ : μ s 0) (hs : μ s ) {r : NNReal} {u : Rˣ} (hμgs : μ (u s) = r * μ s) :

              The kernel of the ringHaarChar : Rˣ → ℝ≥0, namely the units of a locally compact topological ring such that left multiplication by them does not change additive Haar measure.

              Equations
                Instances For
                  theorem MeasureTheory.ringHaarChar_pi {ι : Type u_2} {A : ιType u_3} [(i : ι) → Ring (A i)] [(i : ι) → TopologicalSpace (A i)] [∀ (i : ι), IsTopologicalRing (A i)] [∀ (i : ι), LocallyCompactSpace (A i)] [(i : ι) → MeasurableSpace (A i)] [∀ (i : ι), BorelSpace (A i)] [Fintype ι] [∀ (i : ι), SecondCountableTopology (A i)] (u : (i : ι) → (A i)ˣ) :
                  theorem MeasureTheory.ringHaarChar_pi' {ι : Type u_2} {A : ιType u_3} [(i : ι) → Ring (A i)] [(i : ι) → TopologicalSpace (A i)] [∀ (i : ι), IsTopologicalRing (A i)] [∀ (i : ι), LocallyCompactSpace (A i)] [(i : ι) → MeasurableSpace (A i)] [∀ (i : ι), BorelSpace (A i)] [Fintype ι] [∀ (i : ι), SecondCountableTopology (A i)] (u : ((i : ι) → A i)ˣ) :
                  theorem MeasureTheory.ringHaarChar_restrictedProduct {ι : Type u_2} {A : ιType u_3} [(i : ι) → Ring (A i)] [(i : ι) → TopologicalSpace (A i)] [∀ (i : ι), IsTopologicalRing (A i)] [∀ (i : ι), LocallyCompactSpace (A i)] [(i : ι) → MeasurableSpace (A i)] [∀ (i : ι), BorelSpace (A i)] {C : (i : ι) → Subring (A i)} [hCopen : Fact (∀ (i : ι), IsOpen (C i))] [hCcompact : ∀ (i : ι), CompactSpace (C i)] [∀ (i : ι), SecondCountableTopology (A i)] [Countable ι] (u : (RestrictedProduct (fun (i : ι) => A i) (fun (i : ι) => (C i)) Filter.cofinite)ˣ) :