Documentation Verification Report

Module

πŸ“ Source: FLT/Patching/Module.lean

Statistics

MetricCount
DefinitionsIsPatchingSystem, linearMap, UniformlyBoundedRank, bound, linearMap, rank, OpenIdeals, PatchingModule, Component, componentMap, componentMapModule, constEquiv, equivComponent, incl, liftComponent, map, mapEquiv, mapOfIsPatchingSystem, ofPi, submodule, toConst, Ο€, instAddCommGroupPatchingModule, instModuleForallPatchingModule, instModulePatchingModule, instOrderTopOpenIdeals, instSemilatticeInfOpenIdeals, instTopologicalSpacePatchingModule
28
Theoremscond, linearMap_bijective, linearMap_compLeft, card_quotient_le, cond, exists_finsupp_surjective, exists_rank, finite_quotient_smul, finrank_lt_bound, linearMap_eq_zero, linearMap_surjective, rank_lt_bound, rank_spec, componentMapModule_surjective, continuous_ofPi, incl_apply, isClosed_submodule, mapEquiv_apply, mapEquiv_symm_apply, mapOfIsPatchingSystem_bijective, map_apply, map_comp, map_comp_apply, map_id, map_surjective, ofPi_apply, ofPi_surjective, rank_patchingModule, smul_apply, toConst_surjective, instContinuousSMulComponentValIdealIsOpenCoe, instContinuousSMulPatchingModule, instFiniteComponentValIdealIsOpenCoeOfUniformlyBoundedRankOfFreeQuotientAnnihilator, instFinitePatchingModule, instFiniteQuotientIdealAnnihilator_fLT, instFinite_fLT, instFreePatchingModule, instIsScalarTowerForallPatchingModule, instIsTopologicalAddGroupPatchingModule, instT2SpacePatchingModule, instTotallyDisconnectedSpacePatchingModule
41
Total69

IsPatchingSystem

Definitions

NameCategoryTheorems
linearMap πŸ“–CompOp
2 mathmath: linearMap_compLeft, linearMap_bijective

Theorems

NameKindAssumesProvesValidatesDepends On
cond πŸ“–β€”β€”β€”β€”β€”
linearMap_bijective πŸ“–mathematicalβ€”Module.UniformlyBoundedRank.rank
linearMap
β€”cond
Module.UniformlyBoundedRank.linearMap_eq_zero
Module.UniformlyBoundedRank.linearMap_surjective
Pi.liftQuotientβ‚—_bijective
linearMap_compLeft πŸ“–mathematicalβ€”Module.UniformlyBoundedRank.rank
linearMap
Module.UniformlyBoundedRank.linearMap
β€”β€”

Module

Definitions

NameCategoryTheorems
UniformlyBoundedRank πŸ“–CompDataβ€”

Module.UniformlyBoundedRank

Definitions

NameCategoryTheorems
bound πŸ“–CompOp
5 mathmath: exists_finsupp_surjective, card_quotient_le, finrank_lt_bound, rank_lt_bound, maximalIdeal_pow_bound_le_smul_top
linearMap πŸ“–CompOp
2 mathmath: IsPatchingSystem.linearMap_compLeft, linearMap_surjective
rank πŸ“–CompOp
7 mathmath: PatchingModule.mapOfIsPatchingSystem_bijective, PatchingModule.continuous_ofPi, IsPatchingSystem.linearMap_compLeft, IsPatchingSystem.linearMap_bijective, PatchingModule.rank_patchingModule, linearMap_surjective, rank_spec

Theorems

NameKindAssumesProvesValidatesDepends On
card_quotient_le πŸ“–mathematicalβ€”boundβ€”exists_finsupp_surjective
Pi.liftQuotientβ‚—_surjective
cond πŸ“–β€”β€”β€”β€”β€”
exists_finsupp_surjective πŸ“–mathematicalβ€”boundβ€”instFiniteQuotientIdealAnnihilator_fLT
finrank_lt_bound
exists_rank πŸ“–β€”β€”β€”β€”rank_lt_bound
instFiniteQuotientIdealAnnihilator_fLT
finite_quotient_smul πŸ“–β€”β€”β€”β€”exists_finsupp_surjective
Pi.liftQuotientβ‚—_surjective
finrank_lt_bound πŸ“–mathematicalβ€”boundβ€”rank_lt_bound
linearMap_eq_zero πŸ“–β€”β€”β€”β€”rank_spec
linearMap.eq_1
linearMap_surjective πŸ“–mathematicalβ€”rank
linearMap
β€”rank_spec
linearMap.eq_1
rank_lt_bound πŸ“–mathematicalβ€”boundβ€”cond
rank_spec πŸ“–mathematicalβ€”rankβ€”exists_rank

PatchingModule

Definitions

NameCategoryTheorems
Component πŸ“–CompOp
13 mathmath: instFiniteComponentValIdealIsOpenCoeOfUniformlyBoundedRankOfFreeQuotientAnnihilator, mapEquiv_apply, ofPi_surjective, componentMapModule_surjective, ofPi_apply, instSubsingletonComponentTopIdeal, smul_apply, incl_apply, ker_componentMapModule_mkQ, instContinuousSMulComponentValIdealIsOpenCoe, isClosed_submodule, map_apply, mem_smul_top
componentMap πŸ“–CompOpβ€”
componentMapModule πŸ“–CompOp
4 mathmath: mapEquiv_apply, componentMapModule_surjective, ker_componentMapModule_mkQ, map_apply
constEquiv πŸ“–CompOp
1 mathmath: smul_lemma₁
equivComponent πŸ“–CompOpβ€”
incl πŸ“–CompOp
1 mathmath: incl_apply
liftComponent πŸ“–CompOpβ€”
map πŸ“–CompOp
8 mathmath: map_surjective, mapEquiv_symm_apply, map_id, smul_lemmaβ‚€, map_comp_apply, map_comp, map_apply, ker_map_mkQ
mapEquiv πŸ“–CompOp
2 mathmath: mapEquiv_apply, mapEquiv_symm_apply
mapOfIsPatchingSystem πŸ“–CompOp
2 mathmath: mapOfIsPatchingSystem_bijective, continuous_ofPi
ofPi πŸ“–CompOp
2 mathmath: ofPi_surjective, ofPi_apply
submodule πŸ“–CompOp
6 mathmath: mapEquiv_apply, smul_apply, incl_apply, isClosed_submodule, map_apply, mem_smul_top
toConst πŸ“–CompOp
1 mathmath: toConst_surjective
Ο€ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
componentMapModule_surjective πŸ“–mathematicalβ€”Component
instAddCommGroupUltraProduct
instModuleForallUltraProduct
componentMapModule
β€”UltraProduct.map_surjective
continuous_ofPi πŸ“–mathematicalβ€”PatchingModule
Module.UniformlyBoundedRank.rank
instTopologicalSpacePatchingModule
instAddCommGroupPatchingModule
instModulePatchingModule
mapOfIsPatchingSystem
β€”β€”
incl_apply πŸ“–mathematicalβ€”OpenIdeals
Component
instAddCommGroupUltraProduct
instModuleForallUltraProduct
submodule
PatchingModule
instAddCommGroupPatchingModule
instModuleForallPatchingModule
incl
UltraProduct
UltraProduct.Ο€β‚—
β€”β€”
isClosed_submodule πŸ“–mathematicalβ€”OpenIdeals
Component
instTopologicalSpaceUltraProduct
instAddCommGroupUltraProduct
instModuleForallUltraProduct
submodule
β€”instDiscreteTopologyUltraProduct
mapEquiv_apply πŸ“–mathematicalβ€”PatchingModule
instAddCommGroupPatchingModule
instModuleForallPatchingModule
mapEquiv
OpenIdeals
Component
instAddCommGroupUltraProduct
instModuleForallUltraProduct
submodule
LinearMap.piMap
componentMapModule
β€”β€”
mapEquiv_symm_apply πŸ“–mathematicalβ€”PatchingModule
instAddCommGroupPatchingModule
instModuleForallPatchingModule
mapEquiv
map
β€”β€”
mapOfIsPatchingSystem_bijective πŸ“–mathematicalβ€”PatchingModule
Module.UniformlyBoundedRank.rank
instAddCommGroupPatchingModule
instModulePatchingModule
mapOfIsPatchingSystem
β€”exists_ideal_isOpen_and_subset
denseRange_inverseLimit
instDiscreteTopologyUltraProduct
instT2SpacePatchingModule
continuous_ofPi
map_apply πŸ“–mathematicalβ€”OpenIdeals
Component
instAddCommGroupUltraProduct
instModuleForallUltraProduct
submodule
PatchingModule
instAddCommGroupPatchingModule
instModuleForallPatchingModule
map
componentMapModule
β€”β€”
map_comp πŸ“–mathematicalβ€”map
PatchingModule
instAddCommGroupPatchingModule
instModuleForallPatchingModule
β€”map_comp_apply
map_comp_apply πŸ“–mathematicalβ€”PatchingModule
instAddCommGroupPatchingModule
instModuleForallPatchingModule
map
β€”ofPi_surjective
map_id πŸ“–mathematicalβ€”map
PatchingModule
instAddCommGroupPatchingModule
instModuleForallPatchingModule
β€”UltraProduct.Ο€β‚—_surjective
map_surjective πŸ“–mathematicalβ€”PatchingModule
instAddCommGroupPatchingModule
instModuleForallPatchingModule
map
β€”UltraProduct.Ο€β‚—_surjective
componentMapModule_surjective
nonempty_inverseLimit_of_finite
IsLocalRing.isOpen_maximalIdeal_pow''
instFiniteComponentValIdealIsOpenCoeOfUniformlyBoundedRankOfFreeQuotientAnnihilator
ofPi_apply πŸ“–mathematicalβ€”OpenIdeals
Component
instAddCommGroupUltraProduct
instModuleForallUltraProduct
ofPi
UltraProduct
UltraProduct.Ο€β‚—
β€”β€”
ofPi_surjective πŸ“–mathematicalβ€”OpenIdeals
Component
instAddCommGroupUltraProduct
instModuleForallUltraProduct
ofPi
β€”UltraProduct.Ο€β‚—_surjective
rank_patchingModule πŸ“–mathematicalβ€”PatchingModule
instAddCommGroupPatchingModule
instModulePatchingModule
Module.UniformlyBoundedRank.rank
β€”mapOfIsPatchingSystem_bijective
smul_apply πŸ“–mathematicalβ€”OpenIdeals
Component
instAddCommGroupUltraProduct
instModuleForallUltraProduct
submodule
PatchingModule
instAddCommGroupPatchingModule
instModulePatchingModule
instModuleUltraProduct
β€”β€”
toConst_surjective πŸ“–mathematicalβ€”PatchingModule
instAddCommGroupPatchingModule
instModulePatchingModule
toConst
β€”IsModuleTopology.compactSpace
instIsTopologicalAddGroupPatchingModule
instContinuousSMulPatchingModule
denseRange_inverseLimit
instDiscreteTopologyUltraProduct
UltraProduct.surjective_of_eventually_surjective
instT2SpacePatchingModule

(root)

Definitions

NameCategoryTheorems
IsPatchingSystem πŸ“–CompDataβ€”
OpenIdeals πŸ“–CompOp
9 mathmath: PatchingAlgebra.smulData.f_mono, PatchingModule.mapEquiv_apply, PatchingModule.ofPi_surjective, PatchingModule.ofPi_apply, PatchingModule.smul_apply, PatchingModule.incl_apply, PatchingModule.isClosed_submodule, PatchingModule.map_apply, PatchingModule.mem_smul_top
PatchingModule πŸ“–CompOp
28 mathmath: instIsScalarTowerPatchingAlgebraPatchingModule, instFreePatchingModule, smul_lemma, instFinitePatchingModule, instT2SpacePatchingModule, instFinitePatchingAlgebraPatchingModule, PatchingAlgebra.faithfulSMul, PatchingModule.map_surjective, instTotallyDisconnectedSpacePatchingModule, PatchingModule.mapEquiv_apply, instIsScalarTowerForallPatchingModule, PatchingModule.mapEquiv_symm_apply, PatchingModule.mapOfIsPatchingSystem_bijective, instIsTopologicalAddGroupPatchingModule, smul_lemma₁, PatchingModule.continuous_ofPi, PatchingModule.map_id, PatchingModule.smul_apply, PatchingModule.incl_apply, PatchingModule.toConst_surjective, instContinuousSMulPatchingModule, smul_lemmaβ‚€, PatchingModule.rank_patchingModule, PatchingModule.map_comp_apply, PatchingModule.map_comp, PatchingModule.map_apply, PatchingModule.ker_map_mkQ, PatchingModule.mem_smul_top
instAddCommGroupPatchingModule πŸ“–CompOp
25 mathmath: instIsScalarTowerPatchingAlgebraPatchingModule, instFreePatchingModule, smul_lemma, instFinitePatchingModule, instFinitePatchingAlgebraPatchingModule, PatchingModule.map_surjective, PatchingModule.mapEquiv_apply, instIsScalarTowerForallPatchingModule, PatchingModule.mapEquiv_symm_apply, PatchingModule.mapOfIsPatchingSystem_bijective, instIsTopologicalAddGroupPatchingModule, smul_lemma₁, PatchingModule.continuous_ofPi, PatchingModule.map_id, PatchingModule.smul_apply, PatchingModule.incl_apply, PatchingModule.toConst_surjective, instContinuousSMulPatchingModule, smul_lemmaβ‚€, PatchingModule.rank_patchingModule, PatchingModule.map_comp_apply, PatchingModule.map_comp, PatchingModule.map_apply, PatchingModule.ker_map_mkQ, PatchingModule.mem_smul_top
instModuleForallPatchingModule πŸ“–CompOp
11 mathmath: PatchingModule.map_surjective, PatchingModule.mapEquiv_apply, instIsScalarTowerForallPatchingModule, PatchingModule.mapEquiv_symm_apply, PatchingModule.map_id, PatchingModule.incl_apply, smul_lemmaβ‚€, PatchingModule.map_comp_apply, PatchingModule.map_comp, PatchingModule.map_apply, PatchingModule.ker_map_mkQ
instModulePatchingModule πŸ“–CompOp
14 mathmath: instIsScalarTowerPatchingAlgebraPatchingModule, instFreePatchingModule, smul_lemma, instFinitePatchingModule, instIsScalarTowerForallPatchingModule, PatchingModule.mapOfIsPatchingSystem_bijective, smul_lemma₁, PatchingModule.continuous_ofPi, PatchingModule.smul_apply, PatchingModule.toConst_surjective, instContinuousSMulPatchingModule, PatchingModule.rank_patchingModule, PatchingModule.ker_map_mkQ, PatchingModule.mem_smul_top
instOrderTopOpenIdeals πŸ“–CompOpβ€”
instSemilatticeInfOpenIdeals πŸ“–CompOp
1 mathmath: PatchingAlgebra.smulData.f_mono
instTopologicalSpacePatchingModule πŸ“–CompOp
5 mathmath: instT2SpacePatchingModule, instTotallyDisconnectedSpacePatchingModule, instIsTopologicalAddGroupPatchingModule, PatchingModule.continuous_ofPi, instContinuousSMulPatchingModule

Theorems

NameKindAssumesProvesValidatesDepends On
instContinuousSMulComponentValIdealIsOpenCoe πŸ“–mathematicalβ€”PatchingModule.Component
instAddCommGroupUltraProduct
instModuleUltraProduct
instTopologicalSpaceUltraProduct
β€”instIsTopologicalAddGroupUltraProduct
instDiscreteTopologyUltraProduct
UltraProduct.Ο€β‚—_surjective
instIsScalarTowerForallUltraProduct
instContinuousSMulPatchingModule πŸ“–mathematicalβ€”PatchingModule
instAddCommGroupPatchingModule
instModulePatchingModule
instTopologicalSpacePatchingModule
β€”instIsScalarTowerForallUltraProduct
instContinuousSMulComponentValIdealIsOpenCoe
instFiniteComponentValIdealIsOpenCoeOfUniformlyBoundedRankOfFreeQuotientAnnihilator πŸ“–mathematicalβ€”PatchingModule.Componentβ€”instIsScalarTowerForallUltraProduct
UltraProduct.exists_bijective_of_bddAbove_card
Module.UniformlyBoundedRank.finite_quotient_smul
Module.UniformlyBoundedRank.card_quotient_le
instFinitePatchingModule πŸ“–mathematicalβ€”PatchingModule
instAddCommGroupPatchingModule
instModulePatchingModule
β€”PatchingModule.mapOfIsPatchingSystem_bijective
instFiniteQuotientIdealAnnihilator_fLT πŸ“–β€”β€”β€”β€”Module.UniformlyBoundedRank.rank_lt_bound
instFinite_fLT πŸ“–β€”β€”β€”β€”instFiniteQuotientIdealAnnihilator_fLT
instFreePatchingModule πŸ“–mathematicalβ€”PatchingModule
instAddCommGroupPatchingModule
instModulePatchingModule
β€”PatchingModule.mapOfIsPatchingSystem_bijective
instIsScalarTowerForallPatchingModule πŸ“–mathematicalβ€”PatchingModule
instAddCommGroupPatchingModule
instModuleForallPatchingModule
instModulePatchingModule
β€”instIsScalarTowerForallUltraProduct
instIsTopologicalAddGroupPatchingModule πŸ“–mathematicalβ€”PatchingModule
instTopologicalSpacePatchingModule
instAddCommGroupPatchingModule
β€”instIsTopologicalAddGroupUltraProduct
instT2SpacePatchingModule πŸ“–mathematicalβ€”PatchingModule
instTopologicalSpacePatchingModule
β€”instDiscreteTopologyUltraProduct
instTotallyDisconnectedSpacePatchingModule πŸ“–mathematicalβ€”PatchingModule
instTopologicalSpacePatchingModule
β€”instTotallyDisconnectedSpaceOfDiscreteTopology_fLT
instDiscreteTopologyUltraProduct

---

← Back to Index