Documentation

FLT.Patching.Module

class Module.UniformlyBoundedRank {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] :
Instances
    noncomputable def Module.UniformlyBoundedRank.bound {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] [UniformlyBoundedRank R M] :
    Equations
      Instances For
        theorem Module.UniformlyBoundedRank.rank_lt_bound {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] [UniformlyBoundedRank R M] (i : ι) :
        Module.rank (R annihilator R (M i)) (M i) < (bound R M)
        theorem Module.UniformlyBoundedRank.finrank_lt_bound {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] [UniformlyBoundedRank R M] (i : ι) :
        finrank (R annihilator R (M i)) (M i) < bound R M
        instance instFiniteQuotientIdealAnnihilator_fLT {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] [Module.UniformlyBoundedRank R M] [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] (i : ι) :
        instance instFinite_fLT {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] [Module.UniformlyBoundedRank R M] [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] (i : ι) :
        theorem Module.UniformlyBoundedRank.exists_finsupp_surjective {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] [UniformlyBoundedRank R M] [∀ (i : ι), Free (R annihilator R (M i)) (M i)] (i : ι) :
        ∃ (f : (Fin (bound R M) →₀ R) →ₗ[R] M i), Function.Surjective f
        theorem Module.UniformlyBoundedRank.finite_quotient_smul {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] [UniformlyBoundedRank R M] [∀ (i : ι), Free (R annihilator R (M i)) (M i)] (i : ι) (I : Ideal R) [Finite (R I)] :
        Finite (M i I )
        theorem Module.UniformlyBoundedRank.card_quotient_le {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] [UniformlyBoundedRank R M] [∀ (i : ι), Free (R annihilator R (M i)) (M i)] (i : ι) (I : Ideal R) [Finite (R I)] :
        Nat.card (M i I ) Nat.card (R I) ^ bound R M
        theorem Module.UniformlyBoundedRank.exists_rank {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [UniformlyBoundedRank R M] [∀ (i : ι), Free (R annihilator R (M i)) (M i)] :
        ∃ (n : ), ∀ᶠ (i : ι) in F, Nonempty (M i ≃ₗ[R] Fin nR annihilator R (M i))
        noncomputable def Module.UniformlyBoundedRank.rank {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [UniformlyBoundedRank R M] [∀ (i : ι), Free (R annihilator R (M i)) (M i)] :
        Equations
          Instances For
            theorem Module.UniformlyBoundedRank.rank_spec {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [UniformlyBoundedRank R M] [∀ (i : ι), Free (R annihilator R (M i)) (M i)] :
            ∀ᶠ (i : ι) in F, Nonempty (M i ≃ₗ[R] Fin (rank R M F)R annihilator R (M i))
            noncomputable def Module.UniformlyBoundedRank.linearMap {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [UniformlyBoundedRank R M] [∀ (i : ι), Free (R annihilator R (M i)) (M i)] (i : ι) :
            (Fin (rank R M F)R) →ₗ[R] M i
            Equations
              Instances For
                theorem Module.UniformlyBoundedRank.linearMap_surjective {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [UniformlyBoundedRank R M] [∀ (i : ι), Free (R annihilator R (M i)) (M i)] :
                ∀ᶠ (i : ι) in F, Function.Surjective (linearMap R M F i)
                theorem Module.UniformlyBoundedRank.linearMap_eq_zero {ι : Type u_1} (R : Type u_2) (M : ιType u_3) [CommRing R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [UniformlyBoundedRank R M] [∀ (i : ι), Free (R annihilator R (M i)) (M i)] :
                ∀ᶠ (i : ι) in F, ∀ (x : Fin (rank R M F)R), (linearMap R M F i) x = 0 ∀ (j : Fin (rank R M F)), x j annihilator R (M i)
                @[reducible, inline]
                abbrev PatchingModule.Component (R : Type u_1) [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) (α : Ideal R) :
                Type (max u_2 u_3)
                Equations
                  Instances For
                    def PatchingModule.liftComponent (R : Type u_1) [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) (M₀ : Type u_4) [AddCommGroup M₀] [Module R M₀] (α : Ideal R) (f : (i : ι) → M₀ →ₗ[R] M i) :
                    M₀ α →ₗ[R] Component R M F α
                    Equations
                      Instances For
                        def OpenIdeals (R : Type u_1) [TopologicalSpace R] [CommRing R] :
                        Type u_1
                        Equations
                          Instances For
                            @[reducible, inline]
                            abbrev PatchingModule.componentMap (R : Type u_1) [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {α β : Ideal R} (h : α β) :
                            Component R M F α →ₗ[R] Component R M F β
                            Equations
                              Instances For
                                def PatchingModule.submodule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                Submodule (ιR) ((α : OpenIdeals R) → Component R M F α)
                                Equations
                                  Instances For
                                    theorem PatchingModule.isClosed_submodule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                    IsClosed (submodule R M F)
                                    def PatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                    Type (max (max u_1 u_2) u_3)
                                    Equations
                                      Instances For
                                        instance instAddCommGroupPatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                        Equations
                                          instance instModuleForallPatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                          Module (ιR) (PatchingModule R M F)
                                          Equations
                                            instance instModulePatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                            Equations
                                              @[simp]
                                              theorem PatchingModule.smul_apply (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) (r : R) (x : PatchingModule R M F) (α : OpenIdeals R) :
                                              ↑(r x) α = r x α
                                              instance instIsScalarTowerForallPatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                              IsScalarTower R (ιR) (PatchingModule R M F)
                                              instance instTopologicalSpacePatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                              Equations
                                                instance instIsTopologicalAddGroupPatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                                instance instContinuousSMulComponentValIdealIsOpenCoe (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) (α : OpenIdeals R) :
                                                instance instContinuousSMulPatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                                instance instTotallyDisconnectedSpacePatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                                instance instT2SpacePatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                                def PatchingModule.π (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) (α : OpenIdeals R) :
                                                PatchingModule R M F →ₗ[ιR] Component R M F α
                                                Equations
                                                  Instances For
                                                    def PatchingModule.ofPi (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                                    (OpenIdeals R(i : ι) → M i) →ₗ[OpenIdeals RιR] (α : OpenIdeals R) → Component R M F α
                                                    Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem PatchingModule.ofPi_apply (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) (x : OpenIdeals R(i : ι) → M i) (α : OpenIdeals R) :
                                                        (ofPi R M F) x α = (UltraProduct.πₗ (fun (x : ι) => R) (fun (i : ι) => M i α ) F) fun (i : ι) => Submodule.Quotient.mk (x α i)
                                                        theorem PatchingModule.ofPi_surjective {R : Type u_1} [TopologicalSpace R] [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] {F : Ultrafilter ι} :
                                                        def PatchingModule.incl (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                                        ((i : ι) → M i) →ₗ[ιR] PatchingModule R M F
                                                        Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem PatchingModule.incl_apply (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) (x : (i : ι) → M i) (α : OpenIdeals R) :
                                                            ((incl R M F) x) α = (UltraProduct.πₗ (fun (x : ι) => R) (fun (i : ι) => M i α ) F) fun (i : ι) => Submodule.Quotient.mk (x i)
                                                            instance instFiniteComponentValIdealIsOpenCoeOfUniformlyBoundedRankOfFreeQuotientAnnihilator (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] [CompactSpace R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {α : OpenIdeals R} [Module.UniformlyBoundedRank R M] [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] :
                                                            @[reducible, inline]
                                                            abbrev PatchingModule.componentMapModule (R : Type u_1) [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {N : ιType u_5} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] (f : (i : ι) → M i →ₗ[R] N i) (α : Ideal R) :
                                                            Component R M F α →ₗ[ιR] Component R N F α
                                                            Equations
                                                              Instances For
                                                                theorem PatchingModule.componentMapModule_surjective (R : Type u_1) [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {N : ιType u_5} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] (f : (i : ι) → M i →ₗ[R] N i) (hf : ∀ (i : ι), Function.Surjective (f i)) (α : Ideal R) :
                                                                def PatchingModule.map (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {N : ιType u_5} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] (f : (i : ι) → M i →ₗ[R] N i) :
                                                                Equations
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem PatchingModule.map_apply (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {N : ιType u_5} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] (f : (i : ι) → M i →ₗ[R] N i) (x : PatchingModule R M F) (α : OpenIdeals R) :
                                                                    ((map R F f) x) α = (componentMapModule R F f α) (x α)
                                                                    theorem PatchingModule.map_comp_apply (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {N : ιType u_5} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] {N' : ιType u_6} [(i : ι) → AddCommGroup (N' i)] [(i : ι) → Module R (N' i)] (f : (i : ι) → M i →ₗ[R] N i) (g : (i : ι) → N i →ₗ[R] N' i) (x : PatchingModule R M F) :
                                                                    (map R F fun (i : ι) => g i ∘ₗ f i) x = (map R F g) ((map R F f) x)
                                                                    theorem PatchingModule.map_comp (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {N : ιType u_5} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] {N' : ιType u_6} [(i : ι) → AddCommGroup (N' i)] [(i : ι) → Module R (N' i)] (f : (i : ι) → M i →ₗ[R] N i) (g : (i : ι) → N i →ₗ[R] N' i) :
                                                                    (map R F fun (i : ι) => g i ∘ₗ f i) = map R F g ∘ₗ map R F f
                                                                    @[simp]
                                                                    theorem PatchingModule.map_id (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) :
                                                                    (map R F fun (i : ι) => LinearMap.id) = LinearMap.id
                                                                    def PatchingModule.mapEquiv (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {N : ιType u_5} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] (f : (i : ι) → M i ≃ₗ[R] N i) :
                                                                    Equations
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem PatchingModule.mapEquiv_apply (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {N : ιType u_5} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] (f : (i : ι) → M i ≃ₗ[R] N i) (c : (submodule R M F)) :
                                                                        (mapEquiv R F f) c = (LinearMap.piMap fun (α : OpenIdeals R) => componentMapModule R F (fun (i : ι) => (f i)) α) c,
                                                                        @[simp]
                                                                        theorem PatchingModule.mapEquiv_symm_apply (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {N : ιType u_5} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] (f : (i : ι) → M i ≃ₗ[R] N i) (a : PatchingModule R N F) :
                                                                        (mapEquiv R F f).symm a = (map R F fun (i : ι) => (f i).symm) a
                                                                        theorem PatchingModule.map_surjective (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] [CompactSpace R] {ι : Type u_2} {M : ιType u_3} [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) {N : ιType u_5} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] (f : (i : ι) → M i →ₗ[R] N i) [IsLocalRing R] [IsLocalRing.IsAdicTopology R] [Module.UniformlyBoundedRank R M] [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] (hf : ∀ (i : ι), Function.Surjective (f i)) :
                                                                        def PatchingModule.toConst (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (F : Ultrafilter ι) (M : Type u_5) [AddCommGroup M] [Module R M] :
                                                                        M →ₗ[R] PatchingModule R (fun (x : ι) => M) F
                                                                        Equations
                                                                          Instances For
                                                                            noncomputable def PatchingModule.constEquiv (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] [CompactSpace R] {ι : Type u_2} (F : Ultrafilter ι) [IsLocalRing R] [T2Space R] [IsNoetherianRing R] (M : Type u_5) [AddCommGroup M] [Module R M] [Module.Finite R M] :
                                                                            M ≃ₗ[R] PatchingModule R (fun (x : ι) => M) F
                                                                            Equations
                                                                              Instances For
                                                                                class IsPatchingSystem (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Filter ι) :
                                                                                Instances
                                                                                  noncomputable def IsPatchingSystem.linearMap (R : Type u_1) [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] [Module.UniformlyBoundedRank R M] (α : Ideal R) (i : ι) :
                                                                                  Equations
                                                                                    Instances For
                                                                                      theorem IsPatchingSystem.linearMap_compLeft (R : Type u_1) [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] [Module.UniformlyBoundedRank R M] (α : Ideal R) (i : ι) (x : Fin (Module.UniformlyBoundedRank.rank R M F)R) :
                                                                                      theorem IsPatchingSystem.linearMap_bijective (R : Type u_1) [TopologicalSpace R] [CommRing R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] [Module.UniformlyBoundedRank R M] [IsPatchingSystem R M F] (α : Ideal R) ( : IsOpen α) :
                                                                                      ∀ᶠ (i : ι) in F, Function.Bijective (linearMap R M F α i)
                                                                                      noncomputable def PatchingModule.equivComponent (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] [CompactSpace R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] [Module.UniformlyBoundedRank R M] [IsPatchingSystem R M F] (α : Ideal R) ( : IsOpen α) :
                                                                                      Equations
                                                                                        Instances For
                                                                                          noncomputable def PatchingModule.mapOfIsPatchingSystem (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] [CompactSpace R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] [Module.UniformlyBoundedRank R M] [IsPatchingSystem R M F] :
                                                                                          Equations
                                                                                            Instances For
                                                                                              theorem PatchingModule.continuous_ofPi (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] [CompactSpace R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] [Module.UniformlyBoundedRank R M] [IsPatchingSystem R M F] :
                                                                                              theorem PatchingModule.mapOfIsPatchingSystem_bijective (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] [CompactSpace R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] [Module.UniformlyBoundedRank R M] [IsPatchingSystem R M F] [NonarchimedeanRing R] [T2Space R] :
                                                                                              instance instFreePatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] [CompactSpace R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] [Module.UniformlyBoundedRank R M] [IsPatchingSystem R M F] [NonarchimedeanRing R] [T2Space R] :
                                                                                              instance instFinitePatchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] [CompactSpace R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] [Module.UniformlyBoundedRank R M] [IsPatchingSystem R M F] [NonarchimedeanRing R] [T2Space R] :
                                                                                              theorem PatchingModule.rank_patchingModule (R : Type u_1) [TopologicalSpace R] [CommRing R] [IsTopologicalRing R] [CompactSpace R] {ι : Type u_2} (M : ιType u_3) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (F : Ultrafilter ι) [∀ (i : ι), Module.Free (R Module.annihilator R (M i)) (M i)] [Module.UniformlyBoundedRank R M] [IsPatchingSystem R M F] [NonarchimedeanRing R] [T2Space R] [Nontrivial R] :