class
Module.UniformlyBoundedRank
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
:
- cond : ∃ (n : ℕ), ∀ (i : ι), Module.rank (R ⧸ annihilator R (M i)) (M i) < ↑n
Instances
noncomputable def
Module.UniformlyBoundedRank.bound
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
[UniformlyBoundedRank R M]
:
Equations
Instances For
theorem
Module.UniformlyBoundedRank.rank_lt_bound
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
[UniformlyBoundedRank R M]
(i : ι)
:
theorem
Module.UniformlyBoundedRank.finrank_lt_bound
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
[UniformlyBoundedRank R M]
(i : ι)
:
instance
instFiniteQuotientIdealAnnihilator_fLT
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
[Module.UniformlyBoundedRank R M]
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
(i : ι)
:
Module.Finite (R ⧸ Module.annihilator R (M i)) (M i)
instance
instFinite_fLT
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
[Module.UniformlyBoundedRank R M]
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
(i : ι)
:
Module.Finite R (M i)
theorem
Module.UniformlyBoundedRank.exists_finsupp_surjective
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
[UniformlyBoundedRank R M]
[∀ (i : ι), Free (R ⧸ annihilator R (M i)) (M i)]
(i : ι)
:
theorem
Module.UniformlyBoundedRank.finite_quotient_smul
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
[UniformlyBoundedRank R M]
[∀ (i : ι), Free (R ⧸ annihilator R (M i)) (M i)]
(i : ι)
(I : Ideal R)
[Finite (R ⧸ I)]
:
theorem
Module.UniformlyBoundedRank.card_quotient_le
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
[UniformlyBoundedRank R M]
[∀ (i : ι), Free (R ⧸ annihilator R (M i)) (M i)]
(i : ι)
(I : Ideal R)
[Finite (R ⧸ I)]
:
theorem
Module.UniformlyBoundedRank.exists_rank
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[UniformlyBoundedRank R M]
[∀ (i : ι), Free (R ⧸ annihilator R (M i)) (M i)]
:
noncomputable def
Module.UniformlyBoundedRank.rank
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[UniformlyBoundedRank R M]
[∀ (i : ι), Free (R ⧸ annihilator R (M i)) (M i)]
:
Equations
Instances For
theorem
Module.UniformlyBoundedRank.rank_spec
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[UniformlyBoundedRank R M]
[∀ (i : ι), Free (R ⧸ annihilator R (M i)) (M i)]
:
noncomputable def
Module.UniformlyBoundedRank.linearMap
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[UniformlyBoundedRank R M]
[∀ (i : ι), Free (R ⧸ annihilator R (M i)) (M i)]
(i : ι)
:
Equations
Instances For
theorem
Module.UniformlyBoundedRank.linearMap_surjective
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[UniformlyBoundedRank R M]
[∀ (i : ι), Free (R ⧸ annihilator R (M i)) (M i)]
:
∀ᶠ (i : ι) in ↑F, Function.Surjective ⇑(linearMap R M F i)
theorem
Module.UniformlyBoundedRank.linearMap_eq_zero
{ι : Type u_1}
(R : Type u_2)
(M : ι → Type u_3)
[CommRing R]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[UniformlyBoundedRank R M]
[∀ (i : ι), Free (R ⧸ annihilator R (M i)) (M i)]
:
@[reducible, inline]
abbrev
PatchingModule.Component
(R : Type u_1)
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
(α : Ideal R)
:
Type (max u_2 u_3)
Equations
Instances For
def
PatchingModule.liftComponent
(R : Type u_1)
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
(M₀ : Type u_4)
[AddCommGroup M₀]
[Module R M₀]
(α : Ideal R)
(f : (i : ι) → M₀ →ₗ[R] M i)
:
Equations
Instances For
Equations
Instances For
Equations
instance
instOrderTopOpenIdeals
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
:
OrderTop (OpenIdeals R)
Equations
@[reducible, inline]
abbrev
PatchingModule.componentMap
(R : Type u_1)
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{α β : Ideal R}
(h : α ≤ β)
:
Equations
Instances For
def
PatchingModule.submodule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
Submodule (ι → R) ((α : OpenIdeals R) → Component R M F ↑α)
Equations
Instances For
theorem
PatchingModule.isClosed_submodule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
def
PatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
Type (max (max u_1 u_2) u_3)
Equations
Instances For
instance
instAddCommGroupPatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
AddCommGroup (PatchingModule R M F)
Equations
instance
instModuleForallPatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
Module (ι → R) (PatchingModule R M F)
Equations
instance
instModulePatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
Module R (PatchingModule R M F)
Equations
@[simp]
theorem
PatchingModule.smul_apply
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
(r : R)
(x : PatchingModule R M F)
(α : OpenIdeals R)
:
instance
instIsScalarTowerForallPatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
IsScalarTower R (ι → R) (PatchingModule R M F)
instance
instTopologicalSpacePatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
TopologicalSpace (PatchingModule R M F)
Equations
instance
instIsTopologicalAddGroupPatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
IsTopologicalAddGroup (PatchingModule R M F)
instance
instContinuousSMulComponentValIdealIsOpenCoe
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
(α : OpenIdeals R)
:
ContinuousSMul R (PatchingModule.Component R M F ↑α)
instance
instContinuousSMulPatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
ContinuousSMul R (PatchingModule R M F)
instance
instTotallyDisconnectedSpacePatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
instance
instT2SpacePatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
T2Space (PatchingModule R M F)
def
PatchingModule.π
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
(α : OpenIdeals R)
:
Equations
Instances For
def
PatchingModule.ofPi
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
Equations
Instances For
@[simp]
theorem
PatchingModule.ofPi_apply
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
(x : OpenIdeals R → (i : ι) → M i)
(α : OpenIdeals R)
:
(ofPi R M F) x α = (UltraProduct.πₗ (fun (x : ι) => R) (fun (i : ι) => M i ⧸ ↑α • ⊤) ↑F) fun (i : ι) => Submodule.Quotient.mk (x α i)
theorem
PatchingModule.ofPi_surjective
{R : Type u_1}
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
{F : Ultrafilter ι}
:
Function.Surjective ⇑(ofPi R M F)
def
PatchingModule.incl
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
Equations
Instances For
@[simp]
theorem
PatchingModule.incl_apply
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
(x : (i : ι) → M i)
(α : OpenIdeals R)
:
↑((incl R M F) x) α = (UltraProduct.πₗ (fun (x : ι) => R) (fun (i : ι) => M i ⧸ ↑α • ⊤) ↑F) fun (i : ι) => Submodule.Quotient.mk (x i)
instance
instFiniteComponentValIdealIsOpenCoeOfUniformlyBoundedRankOfFreeQuotientAnnihilator
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{α : OpenIdeals R}
[Module.UniformlyBoundedRank R M]
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
:
Finite (PatchingModule.Component R M F ↑α)
@[reducible, inline]
abbrev
PatchingModule.componentMapModule
(R : Type u_1)
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{N : ι → Type u_5}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module R (N i)]
(f : (i : ι) → M i →ₗ[R] N i)
(α : Ideal R)
:
Equations
Instances For
theorem
PatchingModule.componentMapModule_surjective
(R : Type u_1)
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{N : ι → Type u_5}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module R (N i)]
(f : (i : ι) → M i →ₗ[R] N i)
(hf : ∀ (i : ι), Function.Surjective ⇑(f i))
(α : Ideal R)
:
Function.Surjective ⇑(componentMapModule R F f α)
def
PatchingModule.map
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{N : ι → Type u_5}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module R (N i)]
(f : (i : ι) → M i →ₗ[R] N i)
:
Equations
Instances For
@[simp]
theorem
PatchingModule.map_apply
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{N : ι → Type u_5}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module R (N i)]
(f : (i : ι) → M i →ₗ[R] N i)
(x : PatchingModule R M F)
(α : OpenIdeals R)
:
theorem
PatchingModule.map_comp_apply
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{N : ι → Type u_5}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module R (N i)]
{N' : ι → Type u_6}
[(i : ι) → AddCommGroup (N' i)]
[(i : ι) → Module R (N' i)]
(f : (i : ι) → M i →ₗ[R] N i)
(g : (i : ι) → N i →ₗ[R] N' i)
(x : PatchingModule R M F)
:
theorem
PatchingModule.map_comp
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{N : ι → Type u_5}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module R (N i)]
{N' : ι → Type u_6}
[(i : ι) → AddCommGroup (N' i)]
[(i : ι) → Module R (N' i)]
(f : (i : ι) → M i →ₗ[R] N i)
(g : (i : ι) → N i →ₗ[R] N' i)
:
@[simp]
theorem
PatchingModule.map_id
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
:
def
PatchingModule.mapEquiv
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{N : ι → Type u_5}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module R (N i)]
(f : (i : ι) → M i ≃ₗ[R] N i)
:
Equations
Instances For
@[simp]
theorem
PatchingModule.mapEquiv_apply
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{N : ι → Type u_5}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module R (N i)]
(f : (i : ι) → M i ≃ₗ[R] N i)
(c : ↥(submodule R M F))
:
(mapEquiv R F f) c = ⟨(LinearMap.piMap fun (α : OpenIdeals R) => componentMapModule R F (fun (i : ι) => ↑(f i)) ↑α) ↑c, ⋯⟩
@[simp]
theorem
PatchingModule.mapEquiv_symm_apply
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{N : ι → Type u_5}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module R (N i)]
(f : (i : ι) → M i ≃ₗ[R] N i)
(a : PatchingModule R N F)
:
theorem
PatchingModule.map_surjective
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
{M : ι → Type u_3}
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
{N : ι → Type u_5}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module R (N i)]
(f : (i : ι) → M i →ₗ[R] N i)
[IsLocalRing R]
[IsLocalRing.IsAdicTopology R]
[Module.UniformlyBoundedRank R M]
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
(hf : ∀ (i : ι), Function.Surjective ⇑(f i))
:
Function.Surjective ⇑(map R F f)
def
PatchingModule.toConst
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(F : Ultrafilter ι)
(M : Type u_5)
[AddCommGroup M]
[Module R M]
:
Equations
Instances For
theorem
PatchingModule.toConst_surjective
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
(F : Ultrafilter ι)
(M : Type u_5)
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
:
Function.Surjective ⇑(toConst R F M)
noncomputable def
PatchingModule.constEquiv
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
(F : Ultrafilter ι)
[IsLocalRing R]
[T2Space R]
[IsNoetherianRing R]
(M : Type u_5)
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
:
Equations
Instances For
class
IsPatchingSystem
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Filter ι)
:
Instances
noncomputable def
IsPatchingSystem.linearMap
(R : Type u_1)
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
[Module.UniformlyBoundedRank R M]
(α : Ideal R)
(i : ι)
:
Equations
Instances For
theorem
IsPatchingSystem.linearMap_compLeft
(R : Type u_1)
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
[Module.UniformlyBoundedRank R M]
(α : Ideal R)
(i : ι)
(x : Fin (Module.UniformlyBoundedRank.rank R M F) → R)
:
(linearMap R M F α i) (((Algebra.linearMap R (R ⧸ α)).compLeft (Fin (Module.UniformlyBoundedRank.rank R M F))) x) = Submodule.Quotient.mk ((Module.UniformlyBoundedRank.linearMap R M F i) x)
theorem
IsPatchingSystem.linearMap_bijective
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
[Module.UniformlyBoundedRank R M]
[IsPatchingSystem R M ↑F]
(α : Ideal R)
(hα : IsOpen ↑α)
:
∀ᶠ (i : ι) in ↑F, Function.Bijective ⇑(linearMap R M F α i)
noncomputable def
PatchingModule.equivComponent
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
[Module.UniformlyBoundedRank R M]
[IsPatchingSystem R M ↑F]
(α : Ideal R)
(hα : IsOpen ↑α)
:
Equations
Instances For
noncomputable def
PatchingModule.mapOfIsPatchingSystem
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
[Module.UniformlyBoundedRank R M]
[IsPatchingSystem R M ↑F]
:
Equations
Instances For
theorem
PatchingModule.continuous_ofPi
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
[Module.UniformlyBoundedRank R M]
[IsPatchingSystem R M ↑F]
:
Continuous ⇑(mapOfIsPatchingSystem R M F)
theorem
PatchingModule.mapOfIsPatchingSystem_bijective
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
[Module.UniformlyBoundedRank R M]
[IsPatchingSystem R M ↑F]
[NonarchimedeanRing R]
[T2Space R]
:
Function.Bijective ⇑(mapOfIsPatchingSystem R M F)
instance
instFreePatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
[Module.UniformlyBoundedRank R M]
[IsPatchingSystem R M ↑F]
[NonarchimedeanRing R]
[T2Space R]
:
Module.Free R (PatchingModule R M F)
instance
instFinitePatchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
[Module.UniformlyBoundedRank R M]
[IsPatchingSystem R M ↑F]
[NonarchimedeanRing R]
[T2Space R]
:
Module.Finite R (PatchingModule R M F)
theorem
PatchingModule.rank_patchingModule
(R : Type u_1)
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
[CompactSpace R]
{ι : Type u_2}
(M : ι → Type u_3)
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module R (M i)]
(F : Ultrafilter ι)
[∀ (i : ι), Module.Free (R ⧸ Module.annihilator R (M i)) (M i)]
[Module.UniformlyBoundedRank R M]
[IsPatchingSystem R M ↑F]
[NonarchimedeanRing R]
[T2Space R]
[Nontrivial R]
: