def
Submodule.pi'
{ι : Type u_1}
{R : ι → Type u_2}
{M : ι → Type u_3}
[(i : ι) → CommRing (R i)]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module (R i) (M i)]
(N : (i : ι) → Submodule (R i) (M i))
:
Submodule ((i : ι) → R i) ((i : ι) → M i)
Equations
Instances For
@[simp]
def
LinearMap.piMap
{ι : Type u_1}
{R : ι → Type u_2}
{M : ι → Type u_3}
[(i : ι) → CommRing (R i)]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module (R i) (M i)]
{N : ι → Type u_4}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module (R i) (N i)]
(f : (i : ι) → M i →ₗ[R i] N i)
:
Equations
Instances For
@[simp]
theorem
LinearMap.piMap_apply
{ι : Type u_1}
{R : ι → Type u_2}
{M : ι → Type u_3}
[(i : ι) → CommRing (R i)]
[(i : ι) → AddCommGroup (M i)]
[(i : ι) → Module (R i) (M i)]
{N : ι → Type u_4}
[(i : ι) → AddCommGroup (N i)]
[(i : ι) → Module (R i) (N i)]
(f : (i : ι) → M i →ₗ[R i] N i)
(g : (i : ι) → M i)
(i : ι)
:
instance
instAlgebraForall_fLT
{ι : Type u_4}
{R : ι → Type u_5}
{A : ι → Type u_6}
[(i : ι) → CommSemiring (R i)]
[(i : ι) → Semiring (A i)]
[(i : ι) → Algebra (R i) (A i)]
:
Algebra ((i : ι) → R i) ((i : ι) → A i)
Equations
instance
instCompactSpaceQuotientIdeal_fLT
{R : Type u_4}
[CommRing R]
[TopologicalSpace R]
[CompactSpace R]
(I : Ideal R)
:
CompactSpace (R ⧸ I)
theorem
exists_subgroup_isOpen_and_subset
{α : Type u_4}
[TopologicalSpace α]
[CompactSpace α]
[T2Space α]
[TotallyDisconnectedSpace α]
[CommGroup α]
[IsTopologicalGroup α]
{U : Set α}
(hU : U ∈ nhds 1)
:
theorem
exists_addSubgroup_isOpen_and_subset
{α : Type u_4}
[TopologicalSpace α]
[CompactSpace α]
[T2Space α]
[TotallyDisconnectedSpace α]
[AddCommGroup α]
[IsTopologicalAddGroup α]
{U : Set α}
(hU : U ∈ nhds 0)
:
∃ (G : AddSubgroup α), IsOpen ↑G ∧ ↑G ⊆ U
@[simp]
theorem
TwoSidedIdeal.span_le'
{α : Type u_4}
[NonUnitalNonAssocRing α]
{s : Set α}
{I : TwoSidedIdeal α}
:
@[simp]
@[simp]
Equations
Instances For
theorem
TwoSidedIdeal.leAddSubgroup_subset
{α : Type u_4}
[NonUnitalNonAssocRing α]
(G : AddSubgroup α)
:
theorem
TwoSidedIdeal.mem_leAddSubgroup'
{α : Type u_4}
[NonUnitalNonAssocRing α]
{G : AddSubgroup α}
{x : α}
:
theorem
exists_twoSidedIdeal_isOpen_and_subset
{α : Type u_4}
[TopologicalSpace α]
[CompactSpace α]
[T2Space α]
[TotallyDisconnectedSpace α]
[Ring α]
[IsTopologicalRing α]
{U : Set α}
(hU : U ∈ nhds 0)
:
∃ (I : TwoSidedIdeal α), IsOpen ↑I ∧ ↑I ⊆ U
theorem
exists_ideal_isOpen_and_subset
{α : Type u_4}
[TopologicalSpace α]
[CompactSpace α]
[T2Space α]
[TotallyDisconnectedSpace α]
[Ring α]
[IsTopologicalRing α]
{U : Set α}
(hU : U ∈ nhds 0)
:
@[instance 100]
instance
instTotallyDisconnectedSpaceOfDiscreteTopology_fLT
{α : Type u_4}
[TopologicalSpace α]
[DiscreteTopology α]
:
theorem
WellFoundedGT.exists_eq_sup
{α : Type u_4}
[CompleteLattice α]
[WellFoundedGT α]
(f : ℕ →o α)
:
theorem
WellFoundedLT.exists_eq_inf
{α : Type u_4}
[CompleteLattice α]
[WellFoundedLT α]
(f : ℕ →o αᵒᵈ)
:
theorem
IsLocalRing.maximalIdeal_pow_card_smul_top_le
{R : Type u_4}
{M : Type u_5}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
[AddCommGroup M]
[Module R M]
(N : Submodule R M)
[Finite (M ⧸ N)]
:
theorem
Pi.liftQuotientₗ_surjective
{ι : Type u_4}
{R : Type u_5}
{M : Type u_6}
[CommRing R]
[AddCommGroup M]
[Module R M]
[Finite ι]
(f : (ι → R) →ₗ[R] M)
(I : Ideal R)
(hf : Function.Surjective ⇑f)
:
Function.Surjective ⇑(liftQuotientₗ f I)
theorem
Pi.liftQuotientₗ_bijective
{ι : Type u_4}
{R : Type u_5}
{M : Type u_6}
[CommRing R]
[AddCommGroup M]
[Module R M]
[Finite ι]
(f : (ι → R) →ₗ[R] M)
(I : Ideal R)
(hf : Function.Surjective ⇑f)
(hf' : f.ker ≤ ((Algebra.linearMap R (R ⧸ I)).compLeft ι).ker)
:
Function.Bijective ⇑(liftQuotientₗ f I)
theorem
IsModuleTopology.compactSpace
(R : Type u_4)
(M : Type u_5)
[CommRing R]
[TopologicalSpace R]
[AddCommGroup M]
[Module R M]
[TopologicalSpace M]
[IsModuleTopology R M]
[CompactSpace R]
[Module.Finite R M]
:
theorem
disjoint_nonZeroDivisors_of_mem_minimalPrimes
{R : Type u_4}
[CommRing R]
(p : Ideal R)
(hp : p ∈ minimalPrimes R)
:
Disjoint ↑p ↑(nonZeroDivisors R)