Documentation

FLT.Patching.Utils.Lemmas

theorem IsUnit.pi_iff {ι : Type u_2} {M : ιType u_1} [(i : ι) → Monoid (M i)] {x : (i : ι) → M i} :
IsUnit x ∀ (i : ι), IsUnit (x i)
theorem forall_prod_iff {ι : Sort u_2} {β : ιType u_1} (P : (i : ι) → β iProp) [∀ (i : ι), Nonempty (β i)] :
(∀ (i : ι) (y : (i : ι) → β i), P i (y i)) ∀ (i : ι) (y : β i), P i y
def Ideal.idealQuotientEquiv {R : Type u_1} [CommRing R] (I : Ideal R) :
Ideal (R I) { J : Ideal R // I J }
Equations
    Instances For
      @[simp]
      theorem Ideal.idealQuotientEquiv_apply_coe {R : Type u_1} [CommRing R] (I : Ideal R) (J : Ideal (R I)) :
      @[simp]
      theorem Ideal.idealQuotientEquiv_symm_apply {R : Type u_1} [CommRing R] (I : Ideal R) (J : { J : Ideal R // I J }) :
      def Submodule.pi' {ι : Type u_1} {R : ιType u_2} {M : ιType u_3} [(i : ι) → CommRing (R i)] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module (R i) (M i)] (N : (i : ι) → Submodule (R i) (M i)) :
      Submodule ((i : ι) → R i) ((i : ι) → M i)
      Equations
        Instances For
          @[simp]
          theorem Submodule.mem_pi' {ι : Type u_1} {R : ιType u_2} {M : ιType u_3} [(i : ι) → CommRing (R i)] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module (R i) (M i)] {N : (i : ι) → Submodule (R i) (M i)} {x : (i : ι) → M i} :
          x pi' N ∀ (i : ι), x i N i
          def LinearMap.piMap {ι : Type u_1} {R : ιType u_2} {M : ιType u_3} [(i : ι) → CommRing (R i)] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module (R i) (M i)] {N : ιType u_4} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module (R i) (N i)] (f : (i : ι) → M i →ₗ[R i] N i) :
          ((i : ι) → M i) →ₗ[(i : ι) → R i] (i : ι) → N i
          Equations
            Instances For
              @[simp]
              theorem LinearMap.piMap_apply {ι : Type u_1} {R : ιType u_2} {M : ιType u_3} [(i : ι) → CommRing (R i)] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module (R i) (M i)] {N : ιType u_4} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module (R i) (N i)] (f : (i : ι) → M i →ₗ[R i] N i) (g : (i : ι) → M i) (i : ι) :
              (piMap f) g i = (f i) (g i)
              instance instAlgebraForall_fLT {ι : Type u_4} {R : ιType u_5} {A : ιType u_6} [(i : ι) → CommSemiring (R i)] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra (R i) (A i)] :
              Algebra ((i : ι) → R i) ((i : ι) → A i)
              Equations
                theorem pi'_jacobson {ι : Type u_1} {R : ιType u_2} [(i : ι) → CommRing (R i)] :
                theorem exists_subgroup_isOpen_and_subset {α : Type u_4} [TopologicalSpace α] [CompactSpace α] [T2Space α] [TotallyDisconnectedSpace α] [CommGroup α] [IsTopologicalGroup α] {U : Set α} (hU : U nhds 1) :
                ∃ (G : Subgroup α), IsOpen G G U
                @[simp]
                theorem TwoSidedIdeal.span_le' {α : Type u_4} [NonUnitalNonAssocRing α] {s : Set α} {I : TwoSidedIdeal α} :
                span s I s I
                @[simp]
                theorem TwoSidedIdeal.span_neg {α : Type u_4} [NonUnitalNonAssocRing α] (s : Set α) :
                span (-s) = span s
                theorem TwoSidedIdeal.mem_leAddSubgroup {α : Type u_4} [Ring α] {G : AddSubgroup α} {x : α} :
                x leAddSubgroup G ∀ (a b : α), a * x * b G
                theorem exists_twoSidedIdeal_isOpen_and_subset {α : Type u_4} [TopologicalSpace α] [CompactSpace α] [T2Space α] [TotallyDisconnectedSpace α] [Ring α] [IsTopologicalRing α] {U : Set α} (hU : U nhds 0) :
                ∃ (I : TwoSidedIdeal α), IsOpen I I U
                theorem exists_ideal_isOpen_and_subset {α : Type u_4} [TopologicalSpace α] [CompactSpace α] [T2Space α] [TotallyDisconnectedSpace α] [Ring α] [IsTopologicalRing α] {U : Set α} (hU : U nhds 0) :
                ∃ (I : Ideal α), IsOpen I I U
                theorem WellFoundedGT.exists_eq_sup {α : Type u_4} [CompleteLattice α] [WellFoundedGT α] (f : →o α) :
                ∃ (i : ), f i = ⨆ (i : ), f i
                theorem WellFoundedLT.exists_eq_inf {α : Type u_4} [CompleteLattice α] [WellFoundedLT α] (f : →o αᵒᵈ) :
                ∃ (i : ), f i = ⨅ (i : ), f i
                theorem Submodule.comap_smul_of_le_range {R : Type u_4} {M : Type u_5} {M' : Type u_6} [CommRing R] [AddCommGroup M] [AddCommGroup M'] [Module R M] [Module R M'] (f : M →ₗ[R] M') (S : Submodule R M') (hS : S f.range) (I : Ideal R) :
                comap f (I S) = I comap f Sf.ker
                theorem Submodule.comap_smul_of_surjective {R : Type u_4} {M : Type u_5} {M' : Type u_6} [CommRing R] [AddCommGroup M] [AddCommGroup M'] [Module R M] [Module R M'] (f : M →ₗ[R] M') (S : Submodule R M') (hS : Function.Surjective f) (I : Ideal R) :
                comap f (I S) = I comap f Sf.ker
                noncomputable def Pi.liftQuotientₗ {ι : Type u_4} {R : Type u_5} {M : Type u_6} [CommRing R] [AddCommGroup M] [Module R M] [Finite ι] (f : (ιR) →ₗ[R] M) (I : Ideal R) :
                (ιR I) →ₗ[R] M I
                Equations
                  Instances For
                    theorem Pi.liftQuotientₗ_surjective {ι : Type u_4} {R : Type u_5} {M : Type u_6} [CommRing R] [AddCommGroup M] [Module R M] [Finite ι] (f : (ιR) →ₗ[R] M) (I : Ideal R) (hf : Function.Surjective f) :
                    theorem Pi.liftQuotientₗ_bijective {ι : Type u_4} {R : Type u_5} {M : Type u_6} [CommRing R] [AddCommGroup M] [Module R M] [Finite ι] (f : (ιR) →ₗ[R] M) (I : Ideal R) (hf : Function.Surjective f) (hf' : f.ker ((Algebra.linearMap R (R I)).compLeft ι).ker) :