Documentation Verification Report

Lemmas

📁 Source: FLT/Patching/Utils/Lemmas.lean

Statistics

MetricCount
DefinitionsidealQuotientEquiv, piMap, liftQuotientₗ, pi', leAddSubgroup, instAlgebraForall_fLT
6
TheoremsidealQuotientEquiv_apply_coe, idealQuotientEquiv_symm_apply, maximalIdeal_pow_card_smul_top_le, compactSpace, pi_iff, piMap_apply, liftQuotientₗ_bijective, liftQuotientₗ_surjective, comap_smul_of_le_range, comap_smul_of_surjective, mem_pi', leAddSubgroup_subset, mem_leAddSubgroup, mem_leAddSubgroup', mem_span_singleton, span_le', span_neg, span_singleton_zero, exists_eq_sup, exists_eq_inf, disjoint_nonZeroDivisors_of_mem_minimalPrimes, exists_addSubgroup_isOpen_and_subset, exists_ideal_isOpen_and_subset, exists_subgroup_isOpen_and_subset, exists_twoSidedIdeal_isOpen_and_subset, forall_prod_iff, instCompactSpaceQuotientIdeal_fLT, instTotallyDisconnectedSpaceOfDiscreteTopology_fLT, pi'_jacobson
29
Total35

Ideal

Definitions

NameCategoryTheorems
idealQuotientEquiv 📖CompOp
2 mathmath: idealQuotientEquiv_symm_apply, idealQuotientEquiv_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
idealQuotientEquiv_apply_coe 📖mathematicalidealQuotientEquiv
idealQuotientEquiv_symm_apply 📖mathematicalidealQuotientEquiv

IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
maximalIdeal_pow_card_smul_top_le 📖WellFoundedLT.exists_eq_inf

IsModuleTopology

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace 📖

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
pi_iff 📖

LinearMap

Definitions

NameCategoryTheorems
piMap 📖CompOp
2 mathmath: PatchingModule.mapEquiv_apply, piMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
piMap_apply 📖mathematicalpiMap

Pi

Definitions

NameCategoryTheorems
liftQuotientₗ 📖CompOp
2 mathmath: liftQuotientₗ_bijective, liftQuotientₗ_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
liftQuotientₗ_bijective 📖mathematicalliftQuotientₗSubmodule.comap_smul_of_surjective
liftQuotientₗ_surjective
liftQuotientₗ_surjective 📖mathematicalliftQuotientₗ

Submodule

Definitions

NameCategoryTheorems
pi' 📖CompOp
3 mathmath: pi'_jacobson, eventuallyProd_eq_sup, mem_pi'

Theorems

NameKindAssumesProvesValidatesDepends On
comap_smul_of_le_range 📖
comap_smul_of_surjective 📖comap_smul_of_le_range
mem_pi' 📖mathematicalpi'

TwoSidedIdeal

Definitions

NameCategoryTheorems
leAddSubgroup 📖CompOp
3 mathmath: mem_leAddSubgroup', mem_leAddSubgroup, leAddSubgroup_subset

Theorems

NameKindAssumesProvesValidatesDepends On
leAddSubgroup_subset 📖mathematicalleAddSubgroupmem_span_singleton
mem_leAddSubgroup 📖mathematicalleAddSubgroupmem_span_singleton
mem_leAddSubgroup' 📖mathematicalleAddSubgroup
mem_span_singleton 📖
span_le' 📖
span_neg 📖span_le'
span_singleton_zero 📖span_le'

WellFoundedGT

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq_sup 📖

WellFoundedLT

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq_inf 📖WellFoundedGT.exists_eq_sup

(root)

Definitions

NameCategoryTheorems
instAlgebraForall_fLT 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_nonZeroDivisors_of_mem_minimalPrimes 📖
exists_addSubgroup_isOpen_and_subset 📖
exists_ideal_isOpen_and_subset 📖exists_twoSidedIdeal_isOpen_and_subset
exists_subgroup_isOpen_and_subset 📖
exists_twoSidedIdeal_isOpen_and_subset 📖exists_addSubgroup_isOpen_and_subset
TwoSidedIdeal.mem_leAddSubgroup
TwoSidedIdeal.leAddSubgroup_subset
forall_prod_iff 📖
instCompactSpaceQuotientIdeal_fLT 📖
instTotallyDisconnectedSpaceOfDiscreteTopology_fLT 📖
pi'_jacobson 📖mathematicalSubmodule.pi'forall_prod_iff

---

← Back to Index