Documentation

PhysLean.Particles.BeyondTheStandardModel.RHN.AnomalyCancellation.PlusU1.HyperCharge

Hypercharge in SM with RHN. #

Relevant definitions for the SM hypercharge.

The hypercharge for 1 family.

Equations
    Instances For
      @[simp]
      theorem SMRHN.PlusU1.Y₁_val (i : Fin (PlusU1 1).numberCharges) :
      Y₁.val i = match i with | 0 => 1 | 1 => -4 | 2 => 2 | 3 => -3 | 4 => 6 | 5 => 0
      def SMRHN.PlusU1.Y (n : ) :

      The hypercharge for n family.

      Equations
        Instances For
          @[simp]
          theorem SMRHN.PlusU1.Y.add_quad {n : } (S : (PlusU1 n).QuadSols) (a b : ) :
          SMνACCs.accQuad (a S.val + b (Y n).val) = 0
          def SMRHN.PlusU1.Y.addQuad {n : } (S : (PlusU1 n).QuadSols) (a b : ) :

          The QuadSol obtained by adding hypercharge to a QuadSol.

          Equations
            Instances For
              theorem SMRHN.PlusU1.Y.addQuad_zero {n : } (S : (PlusU1 n).QuadSols) (a : ) :
              addQuad S a 0 = a S
              theorem SMRHN.PlusU1.Y.add_AFL_cube {n : } (S : (PlusU1 n).LinSols) (a b : ) :
              SMνACCs.accCube (a S.val + b (Y n).val) = a ^ 2 * (a * SMνACCs.accCube S.val + 3 * b * ((SMνACCs.cubeTriLin S.val) S.val) (Y n).val)
              theorem SMRHN.PlusU1.Y.add_AF_cube {n : } (S : (PlusU1 n).Sols) (a b : ) :
              SMνACCs.accCube (a S.val + b (Y n).val) = 0
              def SMRHN.PlusU1.Y.addCube {n : } (S : (PlusU1 n).Sols) (a b : ) :

              The Sol obtained by adding hypercharge to a Sol.

              Equations
                Instances For