Complex Lorentz vectors #
We define complex Lorentz vectors in 4d space-time as representations of SL(2, C).
The representation of SL(2, ℂ) on complex vectors corresponding to contravariant
Lorentz vectors. In index notation these have an up index ψⁱ.
Equations
Instances For
The representation of SL(2, ℂ) on complex vectors corresponding to contravariant
Lorentz vectors. In index notation these have a down index ψⁱ.
Equations
Instances For
The standard basis of complex contravariant Lorentz vectors.
Equations
Instances For
@[simp]
@[simp]
theorem
Lorentz.complexContrBasis_ρ_apply
(M : Matrix.SpecialLinearGroup (Fin 2) ℂ)
(i j : Fin 1 ⊕ Fin 3)
:
theorem
Lorentz.complexContrBasis_ρ_val
(M : Matrix.SpecialLinearGroup (Fin 2) ℂ)
(v : ↑complexContr.V)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
The standard basis of complex covariant Lorentz vectors.
Equations
Instances For
@[simp]
@[simp]
theorem
Lorentz.complexCoBasis_ρ_apply
(M : Matrix.SpecialLinearGroup (Fin 2) ℂ)
(i j : Fin 1 ⊕ Fin 3)
:
(LinearMap.toMatrix complexCoBasis complexCoBasis) (complexCo.ρ M) i j = (LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹.transpose i j
@[simp]
@[simp]
@[simp]
@[simp]
Relation to real #
The semilinear map including real Lorentz vectors into complex contravariant lorentz vectors.
Equations
Instances For
theorem
Lorentz.inclCongrRealLorentz_ρ
(M : Matrix.SpecialLinearGroup (Fin 2) ℂ)
(v : ContrMod 3)
:
(complexContr.ρ M) (inclCongrRealLorentz v) = inclCongrRealLorentz (((Contr 3).ρ (SL2C.toLorentzGroup M)) v)
theorem
Lorentz.SL2CRep_ρ_basis
(M : Matrix.SpecialLinearGroup (Fin 2) ℂ)
(i : Fin 1 ⊕ Fin 3)
:
(complexContr.ρ M) (complexContrBasis i) = ∑ j : Fin 1 ⊕ Fin 3, ↑(SL2C.toLorentzGroup M) j i • complexContrBasis j