Documentation Verification Report

Basic

๐Ÿ“ Source: PhysLean/Relativity/Tensors/ComplexTensor/Vector/Pre/Basic.lean

Statistics

MetricCount
DefinitionscomplexCo, complexCoBasis, complexCoBasisFin4, complexContr, complexContrBasis, complexContrBasisFin4, inclCongrRealLorentz
7
TheoremsSL2CRep_ฯ_basis, complexCoBasisFin4_apply_one, complexCoBasisFin4_apply_three, complexCoBasisFin4_apply_two, complexCoBasisFin4_apply_zero, complexCoBasis_toFin13โ„‚, complexCoBasis_ฯ_apply, complexContrBasisFin4_apply_one, complexContrBasisFin4_apply_succ, complexContrBasisFin4_apply_three, complexContrBasisFin4_apply_two, complexContrBasisFin4_apply_zero, complexContrBasis_of_real, complexContrBasis_toFin13โ„‚, complexContrBasis_ฯ_apply, complexContrBasis_ฯ_val, inclCongrRealLorentz_val, inclCongrRealLorentz_ฯ
18
Total25

Lorentz

Definitions

NameCategoryTheorems
complexCo ๐Ÿ“–CompOp
42 mathmath: contrCoContraction_basis, contr_coContrUnit, complexLorentzTensor.coContrUnit_eq_complexCoBasis_complexContrBasis, complexCoBasisFin4_apply_one, coContrUnit_symm, contrCoUnit_symm, coCoToMatrix_symm_expand_tmul, contrCoUnitVal_expand_tmul, coContrToMatrix_ฯ, contrCoContraction_basis', coContrContraction_apply_metric, complexCoBasis_toFin13โ„‚, complexCoBasis_ฯ_apply, complexLorentzTensor.coContrUnit_eq_complexCoBasisFin4_complexContrBasisFin4, coCoToMatrix_ฯ, complexCoBasisFin4_apply_three, coContrToMatrix_symm_expand_tmul, contrCoContraction_hom_tmul, complexLorentzTensor.basis_down_eq, contrCoContraction_tmul_symm, coContrContraction_basis', coContrContraction_hom_tmul, coCoToMatrix_ฯ_symm, complexLorentzTensor.contrCoUnit_eq_complexContrBasisFin4_complexCoBasisFin4, contrCoToMatrix_ฯ_symm, coContrContraction_basis, complexLorentzTensor.coMetric_eq_complexCoBasisFin4, coContrUnitVal_expand_tmul, contrCoToMatrix_ฯ, complexLorentzTensor.coMetric_eq_complexCoBasis, complexCoBasisFin4_apply_two, complexLorentzTensor.contrCoUnit_eq_complexContrBasis_complexCoBasis, coContrToMatrix_ฯ_symm, contrCoContraction_apply_metric, coMetricVal_expand_tmul, contrCoUnit_apply_one, coContrUnit_apply_one, coContrContraction_tmul_symm, contr_contrCoUnit, contrCoToMatrix_symm_expand_tmul, coMetric_apply_one, complexCoBasisFin4_apply_zero
complexCoBasis ๐Ÿ“–CompOp
17 mathmath: complexLorentzTensor.coContrUnit_eq_complexCoBasis_complexContrBasis, complexCoBasisFin4_apply_one, coCoToMatrix_symm_expand_tmul, contrCoUnitVal_expand_tmul, contrCoContraction_basis', complexCoBasis_toFin13โ„‚, complexCoBasis_ฯ_apply, complexCoBasisFin4_apply_three, coContrToMatrix_symm_expand_tmul, coContrContraction_basis', coContrUnitVal_expand_tmul, complexLorentzTensor.coMetric_eq_complexCoBasis, complexCoBasisFin4_apply_two, complexLorentzTensor.contrCoUnit_eq_complexContrBasis_complexCoBasis, coMetricVal_expand_tmul, contrCoToMatrix_symm_expand_tmul, complexCoBasisFin4_apply_zero
complexCoBasisFin4 ๐Ÿ“–CompOp
10 mathmath: contrCoContraction_basis, complexCoBasisFin4_apply_one, complexLorentzTensor.coContrUnit_eq_complexCoBasisFin4_complexContrBasisFin4, complexCoBasisFin4_apply_three, complexLorentzTensor.basis_down_eq, complexLorentzTensor.contrCoUnit_eq_complexContrBasisFin4_complexCoBasisFin4, coContrContraction_basis, complexLorentzTensor.coMetric_eq_complexCoBasisFin4, complexCoBasisFin4_apply_two, complexCoBasisFin4_apply_zero
complexContr ๐Ÿ“–CompOp
51 mathmath: contrCoContraction_basis, complexContrBasis_toFin13โ„‚, contr_coContrUnit, complexLorentzTensor.coContrUnit_eq_complexCoBasis_complexContrBasis, contrContrToMatrix_ฯ_symm, contrContrToMatrix_symm_expand_tmul, coContrUnit_symm, complexContrBasis_ฯ_apply, contrCoUnit_symm, complexContrBasisFin4_apply_three, contrCoUnitVal_expand_tmul, coContrToMatrix_ฯ, SL2CRep_ฯ_basis, complexLorentzTensor.basis_up_eq, complexLorentzTensor.contrMetric_eq_complexContrBasisFin4, inclCongrRealLorentz_ฯ, contrCoContraction_basis', complexLorentzTensor.contrMetric_eq_complexContrBasis, coContrContraction_apply_metric, complexLorentzTensor.coContrUnit_eq_complexCoBasisFin4_complexContrBasisFin4, PauliMatrix.asConsTensor_apply_one, coContrToMatrix_symm_expand_tmul, contrMetricVal_expand_tmul, complexContrBasisFin4_apply_succ, contrCoContraction_hom_tmul, PauliMatrix.asTensor_expand, contrCoContraction_tmul_symm, coContrContraction_basis', coContrContraction_hom_tmul, complexLorentzTensor.contrCoUnit_eq_complexContrBasisFin4_complexCoBasisFin4, contrCoToMatrix_ฯ_symm, coContrContraction_basis, inclCongrRealLorentz_val, complexContrBasisFin4_apply_one, contrMetric_apply_one, coContrUnitVal_expand_tmul, contrCoToMatrix_ฯ, PauliMatrix.asTensor_expand_complexContrBasis, complexLorentzTensor.contrCoUnit_eq_complexContrBasis_complexCoBasis, complexContrBasis_ฯ_val, complexContrBasisFin4_apply_zero, coContrToMatrix_ฯ_symm, complexContrBasis_of_real, contrCoContraction_apply_metric, contrCoUnit_apply_one, coContrUnit_apply_one, coContrContraction_tmul_symm, contrContrToMatrix_ฯ, contr_contrCoUnit, contrCoToMatrix_symm_expand_tmul, complexContrBasisFin4_apply_two
complexContrBasis ๐Ÿ“–CompOp
22 mathmath: complexContrBasis_toFin13โ„‚, complexLorentzTensor.coContrUnit_eq_complexCoBasis_complexContrBasis, contrContrToMatrix_symm_expand_tmul, complexContrBasis_ฯ_apply, complexContrBasisFin4_apply_three, contrCoUnitVal_expand_tmul, SL2CRep_ฯ_basis, contrCoContraction_basis', complexLorentzTensor.contrMetric_eq_complexContrBasis, coContrToMatrix_symm_expand_tmul, contrMetricVal_expand_tmul, complexContrBasisFin4_apply_succ, PauliMatrix.asTensor_expand, coContrContraction_basis', complexContrBasisFin4_apply_one, coContrUnitVal_expand_tmul, PauliMatrix.asTensor_expand_complexContrBasis, complexLorentzTensor.contrCoUnit_eq_complexContrBasis_complexCoBasis, complexContrBasisFin4_apply_zero, complexContrBasis_of_real, contrCoToMatrix_symm_expand_tmul, complexContrBasisFin4_apply_two
complexContrBasisFin4 ๐Ÿ“–CompOp
11 mathmath: contrCoContraction_basis, complexContrBasisFin4_apply_three, complexLorentzTensor.basis_up_eq, complexLorentzTensor.contrMetric_eq_complexContrBasisFin4, complexLorentzTensor.coContrUnit_eq_complexCoBasisFin4_complexContrBasisFin4, complexContrBasisFin4_apply_succ, complexLorentzTensor.contrCoUnit_eq_complexContrBasisFin4_complexCoBasisFin4, coContrContraction_basis, complexContrBasisFin4_apply_one, complexContrBasisFin4_apply_zero, complexContrBasisFin4_apply_two
inclCongrRealLorentz ๐Ÿ“–CompOp
3 mathmath: inclCongrRealLorentz_ฯ, inclCongrRealLorentz_val, complexContrBasis_of_real

Theorems

NameKindAssumesProvesValidatesDepends On
SL2CRep_ฯ_basis ๐Ÿ“–mathematicalโ€”complexContr
complexContrBasis
LorentzGroup
lorentzGroupIsGroup
SL2C.toLorentzGroup
โ€”complexContrBasis_of_real
inclCongrRealLorentz_ฯ
Contr.ฯ_stdBasis
complexCoBasisFin4_apply_one ๐Ÿ“–mathematicalโ€”complexCo
complexCoBasisFin4
complexCoBasis
โ€”โ€”
complexCoBasisFin4_apply_three ๐Ÿ“–mathematicalโ€”complexCo
complexCoBasisFin4
complexCoBasis
โ€”โ€”
complexCoBasisFin4_apply_two ๐Ÿ“–mathematicalโ€”complexCo
complexCoBasisFin4
complexCoBasis
โ€”โ€”
complexCoBasisFin4_apply_zero ๐Ÿ“–mathematicalโ€”complexCo
complexCoBasisFin4
complexCoBasis
โ€”โ€”
complexCoBasis_toFin13โ„‚ ๐Ÿ“–mathematicalโ€”Coโ„‚Module.toFin13โ„‚
complexCo
complexCoBasis
โ€”โ€”
complexCoBasis_ฯ_apply ๐Ÿ“–mathematicalโ€”complexCo
complexCoBasis
LorentzGroup
lorentzGroupIsGroup
LorentzGroup.toComplex
SL2C.toLorentzGroup
โ€”โ€”
complexContrBasisFin4_apply_one ๐Ÿ“–mathematicalโ€”complexContr
complexContrBasisFin4
complexContrBasis
โ€”โ€”
complexContrBasisFin4_apply_succ ๐Ÿ“–mathematicalโ€”complexContr
complexContrBasisFin4
complexContrBasis
โ€”โ€”
complexContrBasisFin4_apply_three ๐Ÿ“–mathematicalโ€”complexContr
complexContrBasisFin4
complexContrBasis
โ€”โ€”
complexContrBasisFin4_apply_two ๐Ÿ“–mathematicalโ€”complexContr
complexContrBasisFin4
complexContrBasis
โ€”โ€”
complexContrBasisFin4_apply_zero ๐Ÿ“–mathematicalโ€”complexContr
complexContrBasisFin4
complexContrBasis
โ€”โ€”
complexContrBasis_of_real ๐Ÿ“–mathematicalโ€”complexContr
complexContrBasis
ContrMod
ContrMod.instAddCommMonoid
ContrMod.instModuleReal
inclCongrRealLorentz
ContrMod.stdBasis
โ€”Contrโ„‚Module.ext
ContrMod.toFin1dโ„.eq_1
ContrMod.stdBasis_toFin1dโ„Equiv_apply_same
ContrMod.stdBasis_toFin1dโ„Equiv_apply_ne
complexContrBasis_toFin13โ„‚ ๐Ÿ“–mathematicalโ€”Contrโ„‚Module.toFin13โ„‚
complexContr
complexContrBasis
โ€”โ€”
complexContrBasis_ฯ_apply ๐Ÿ“–mathematicalโ€”complexContr
complexContrBasis
LorentzGroup
lorentzGroupIsGroup
LorentzGroup.toComplex
SL2C.toLorentzGroup
โ€”โ€”
complexContrBasis_ฯ_val ๐Ÿ“–mathematicalโ€”Contrโ„‚Module.val
complexContr
LorentzGroup
lorentzGroupIsGroup
LorentzGroup.toComplex
SL2C.toLorentzGroup
โ€”โ€”
inclCongrRealLorentz_val ๐Ÿ“–mathematicalโ€”Contrโ„‚Module.val
ContrMod
complexContr
ContrMod.instAddCommMonoid
ContrMod.instModuleReal
inclCongrRealLorentz
ContrMod.toFin1dโ„
โ€”โ€”
inclCongrRealLorentz_ฯ ๐Ÿ“–mathematicalโ€”complexContr
ContrMod
ContrMod.instAddCommMonoid
ContrMod.instModuleReal
inclCongrRealLorentz
LorentzGroup
lorentzGroupIsGroup
Contr
SL2C.toLorentzGroup
โ€”Contrโ„‚Module.ext
complexContrBasis_ฯ_val
inclCongrRealLorentz_val
LorentzGroup.toComplex_mulVec_ofReal

---

โ† Back to Index