Documentation Verification Report

FioriKadiriSwidinsky

📁 Source: PrimeNumberTheoremAnd/FioriKadiriSwidinsky.lean

Statistics

MetricCount
Definitionsincomplete, A, Hn, , Inputs, B₀, B₁, H₀, R, RvM, S₀, T₀, ZDB, b₁, b₂, b₃, default, corollary_2_9, corollary_2_9_merged, Sigma, s₀, table_1, table_5, table_8, ε, ε₁, ε₂, ε₃, ε₄, σn, incomplete
31
TheoremsFKS_corollary_1_3, FKS_corollary_1_4, hH₀, hR, hRvM, hS₀T₀, corollary_2_3, corollary_3_10, corollary_3_12, lemma_2_1, lemma_2_5, lemma_5_3, lemma_5_4, proposition_3_11, proposition_3_14, proposition_3_4, proposition_3_6, proposition_3_8, remark_2_6_a, remark_2_6_b, remark_3_7, Hσ_zeroes, table_1_prop, theorem_1_1, theorem_1_1b, theorem_1_2b, theorem_2_7, theorem_3_1, theorem_3_2
29
Total60
⚠️ With sorrycorollary_2_9_merged, FKS_corollary_1_3, FKS_corollary_1_4, corollary_2_3, corollary_3_10, corollary_3_12, lemma_2_1, lemma_2_5, lemma_5_3, lemma_5_4, proposition_3_11, proposition_3_14, proposition_3_4, proposition_3_6, proposition_3_8, remark_2_6_b, remark_3_7, Hσ_zeroes, table_1_prop, theorem_1_1, theorem_1_1b, theorem_1_2b, theorem_2_7, theorem_3_1, theorem_3_2
25

Complex.Gamma

Definitions

NameCategoryTheorems
incomplete 📖CompOp

FKS

Definitions

NameCategoryTheorems
A 📖CompOp
2 mathmath: FKS2.remark_15, theorem_1_2b
Hn 📖CompOp
📖CompOp
2 mathmath: remark_3_7, riemannZeta.Hσ_zeroes
Inputs 📖CompData
corollary_2_9 📖CompOp
corollary_2_9_merged 📖 ⚠️CompOp
s₀ 📖CompOp
1 mathmath: lemma_2_5
table_1 📖CompOp
table_5 📖CompOp
table_8 📖CompOp
ε 📖CompOp
1 mathmath: theorem_1_1
ε₁ 📖CompOp
1 mathmath: proposition_3_4
ε₂ 📖CompOp
1 mathmath: proposition_3_6
ε₃ 📖CompOp
1 mathmath: proposition_3_8
ε₄ 📖CompOp
2 mathmath: proposition_3_14, corollary_3_12
σn 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
FKS_corollary_1_3 📖 ⚠️mathematicalEψ.classicalBound
FKS_corollary_1_4 📖 ⚠️mathematicalEψ.classicalBound
corollary_2_3 📖 ⚠️mathematicalInputs.T₀riemannZeta.zeroes_sum
Inputs.S₀
Inputs.B₁
corollary_3_10 📖 ⚠️mathematicalriemannZeta.Sigma
corollary_3_12 📖 ⚠️mathematical
Inputs.H₀
Inputs.R
riemannZeta.Sigma
ε₄
lemma_2_1 📖 ⚠️mathematicalriemannZeta.zeroes_sum
Inputs.B₁
lemma_2_5 📖 ⚠️mathematicalzero_density_bound.T₀
Inputs.ZDB
zero_density_bound.σ_range
s₀
Inputs.B₀
lemma_5_3 📖 ⚠️mathematical
lemma_5_4 📖 ⚠️mathematical
proposition_3_11 📖 ⚠️mathematical
Inputs.H₀
Inputs.R
riemannZeta.Sigma
riemannZeta.N'
proposition_3_14 📖 ⚠️mathematicalε₄
zero_density_bound.c₁
Inputs.ZDB
Inputs.R
proposition_3_4 📖 ⚠️mathematical
riemannZeta.zeroes_sum
ε₁
proposition_3_6 📖 ⚠️mathematicalInputs.T₀riemannZeta.Sigma
ε₂
proposition_3_8 📖 ⚠️mathematicalzero_density_bound.σ_range
Inputs.ZDB
Inputs.H₀
riemannZeta.Sigma
ε₃
remark_2_6_a 📖mathematicalReal.Gamma.incomplete
remark_2_6_b 📖 ⚠️mathematicalReal.Gamma.incomplete
remark_3_7 📖 ⚠️mathematical
table_1_prop 📖 ⚠️mathematicaltable_1riemannZeta.zeroes_sum
theorem_1_1 📖 ⚠️mathematical
ε
theorem_1_1b 📖 ⚠️mathematicaltable_5
theorem_1_2b 📖 ⚠️mathematicalEψ.classicalBound
A
theorem_2_7 📖 ⚠️mathematicalInputs.H₀riemannZeta.N'
KLN.CC₁
KLN.CC₂
theorem_3_1 📖 ⚠️mathematical
riemannZeta.zeroes_sum
theorem_3_2 📖 ⚠️mathematicalriemannZeta.zeroes_sum

FKS.Inputs

Definitions

NameCategoryTheorems
B₀ 📖CompOp
1 mathmath: FKS.lemma_2_5
B₁ 📖CompOp
2 mathmath: FKS.corollary_2_3, FKS.lemma_2_1
H₀ 📖CompOp
1 mathmath: hH₀
R 📖CompOp
2 mathmath: FKS.proposition_3_14, hR
RvM 📖CompOp
S₀ 📖CompOp
2 mathmath: hS₀T₀, FKS.corollary_2_3
T₀ 📖CompOp
1 mathmath: hS₀T₀
ZDB 📖CompOp
1 mathmath: FKS.proposition_3_14
b₁ 📖CompOp
1 mathmath: hRvM
b₂ 📖CompOp
1 mathmath: hRvM
b₃ 📖CompOp
1 mathmath: hRvM
default 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hH₀ 📖mathematicalriemannZeta.RH_up_to
H₀
hR 📖mathematicalriemannZeta.classicalZeroFree
R
hRvM 📖mathematicalriemannZeta.Riemann_vonMangoldt_bound
b₁
b₂
b₃
hS₀T₀ 📖mathematicalriemannZeta.zeroes_sum
T₀
S₀

FKS.riemannZeta

Definitions

NameCategoryTheorems
Sigma 📖CompOp
5 mathmath: FKS.proposition_3_8, FKS.proposition_3_11, FKS.corollary_3_12, FKS.proposition_3_6, FKS.corollary_3_10

Theorems

NameKindAssumesProvesValidatesDepends On
Hσ_zeroes 📖 ⚠️mathematicalriemannZeta.classicalZeroFreeriemannZeta.N'
FKS.Hσ

Real.Gamma

Definitions

NameCategoryTheorems
incomplete 📖CompOp
2 mathmath: FKS.remark_2_6_a, FKS.remark_2_6_b

---

← Back to Index