- b₁ : ℝ
- b₂ : ℝ
- b₃ : ℝ
- hRvM : riemannZeta.Riemann_vonMangoldt_bound self.b₁ self.b₂ self.b₃
- ZDB : zero_density_bound
- H₀ : ℝ
- hH₀ : riemannZeta.RH_up_to self.H₀
- R : ℝ
- hR : riemannZeta.classicalZeroFree self.R
- S₀ : ℝ
- T₀ : ℝ
Instances For
theorem
FKS.theorem_2_7
(I : Inputs)
{k δ α d η₀ η μ σ H T : ℝ}
(hk : k ∈ Set.Icc (10 ^ 9 / I.H₀) 1)
(hα : α > 0)
(hδ : δ ≥ 1)
(hη₀ : η₀ = 0.23622)
(hμ : μ ∈ Set.Icc (1 + η₀) (1 + η))
(hη : η ∈ Set.Ioo η₀ 0.5)
(hσ : σ > 0.5 + d / Real.log I.H₀)
(hH : H ∈ Set.Ico 1002 I.H₀)
(hT : T ≥ I.H₀)
:
riemannZeta.N' σ T ≤ (T - H) * Real.log T / (2 * Real.pi * d) * Real.log
(1 + KLN.CC₁ I.H₀ α d δ k H σ * Real.log (k * T) ^ (2 * σ) * Real.log T ^ (4 * (1 - σ)) * T ^ (8 / 3 * (1 - σ)) / (T - H)) + KLN.CC₂ I.H₀ d η k H μ σ * Real.log T ^ 2 / (2 * Real.pi * d) ∧ riemannZeta.N' σ T ≤ KLN.CC₁ I.H₀ α d δ k H σ * Real.log (k * T) ^ (2 * σ) * Real.log T ^ (5 - 4 * σ) * T ^ (8 / 3 * (1 - σ)) / (2 * Real.pi * d) + KLN.CC₂ I.H₀ d η k H μ σ * Real.log T ^ 2 / (2 * Real.pi * d)
Need to merge all the individual estimates above into one single estimate
Equations
Instances For
Equations
Instances For
theorem
FKS.remark_2_6_b
(s : ℝ)
(h : s > 1)
:
Filter.Tendsto (fun (x : ℝ) => Real.Gamma.incomplete s x / (x ^ (s - 1) * Real.exp (-x))) Filter.atTop (nhds 1)
theorem
FKS.riemannZeta.Hσ_zeroes
(H₀ R σ : ℝ)
(hH₀ : riemannZeta.RH_up_to H₀)
(hR : riemannZeta.classicalZeroFree R)
:
theorem
FKS.proposition_3_11
(I : Inputs)
{σ₂ T x : ℝ}
(K : ℕ)
(hσ₂ : σ₂ ∈ Set.Ioc (5 / 8) 1)
(t_seq : Fin (K + 2) → ℝ)
(ht0 : t_seq 0 = max (Hσ I.H₀ I.R σ₂) (Real.exp (√(Real.log x) / I.R)))
(htK : t_seq (Fin.last (K + 1)) = T)
(ht_incr : StrictMono t_seq)
:
riemannZeta.Sigma T x σ₂ 1 ≤ 2 * riemannZeta.N' σ₂ T * x ^ (-1 / (I.R * Real.log (t_seq 0))) / t_seq 0 ∧ riemannZeta.Sigma T x σ₂ 1 ≤ 2 * ∑ k ∈ Finset.Ioo 0 (Fin.last (K + 1)),
riemannZeta.N' σ₂ (t_seq k) * (x ^ (-1 / (I.R * Real.log (t_seq (k - 1)))) / t_seq (k - 1) - x ^ (-1 / (I.R * Real.log (t_seq k))) / t_seq k) + x ^ (-1 / (I.R * Real.log (t_seq (Fin.last K).castSucc))) / t_seq (Fin.last K).castSucc * riemannZeta.N' σ₂ T
theorem
FKS.proposition_3_14
(I : Inputs)
{c : ℝ}
(K : ℕ)
(hc : c > 1)
(hK : K ≥ 2)
:
have t₀ := fun (x : ℝ) => Real.exp (√(Real.log x) / I.R);
have T := fun (x : ℝ) => t₀ x ^ c;
have σ₂ := fun (x : ℝ) => 1 - 2 / (I.R * Real.log (t₀ x));
have w₁ := 1 + (c - 1) / ↑K;
have C := 2 * I.ZDB.c₁ (σ₂ 1) * Real.exp (16 * w₁ / (3 * I.R)) * w₁ ^ 3;
have f := fun (x : ℝ) => C * Real.log (t₀ x) ^ (3 + 4 / (I.R * Real.log (t₀ x))) / t₀ x ^ 2;
Asymptotics.IsEquivalent Filter.atTop (fun (x : ℝ) => ε₄ I (t₀ x) x (σ₂ x) K (T x)) f ∧ AntitoneOn (fun (x : ℝ) => ε₄ I (t₀ x) x (σ₂ x) K (T x)) (Set.Ioi (Real.exp (I.R * Real.exp 2))) ∧ AntitoneOn (fun (x : ℝ) => ε₄ I (t₀ x) x (σ₂ x) K (T x) * t₀ x ^ 2 / Real.log (t₀ x) ^ 3)
(Set.Ioi (Real.exp (I.R * Real.exp 2)))
theorem
FKS.theorem_1_2b
(x₀ : ℝ)
(h : Real.log x₀ ≥ 1000)
:
Eψ.classicalBound (A x₀) (3 / 2) 2 5.5666305 x₀