Documentation

PrimeNumberTheoremAnd.FioriKadiriSwidinsky

structure FKS.Inputs :
Instances For
    Equations
      Instances For
        theorem FKS.table_1_prop {T₀ S₀ : } (h : (T₀, S₀) table_1) :
        (riemannZeta.zeroes_sum Set.univ (Set.Ioo 0 T₀) fun (ρ : ) => 1 / ρ.im) < S₀
        theorem FKS.theorem_2_7 (I : Inputs) {k δ α d η₀ η μ σ H T : } (hk : k Set.Icc (10 ^ 9 / I.H₀) 1) ( : α > 0) ( : δ 1) (hη₀ : η₀ = 0.23622) ( : μ Set.Icc (1 + η₀) (1 + η)) ( : η Set.Ioo η₀ 0.5) ( : σ > 0.5 + d / Real.log I.H₀) (hH : H Set.Ico 1002 I.H₀) (hT : T I.H₀) :
        riemannZeta.N' σ T (T - H) * Real.log T / (2 * Real.pi * d) * Real.log (1 + KLN.CC₁ I.H₀ α d δ k H σ * Real.log (k * T) ^ (2 * σ) * Real.log T ^ (4 * (1 - σ)) * T ^ (8 / 3 * (1 - σ)) / (T - H)) + KLN.CC₂ I.H₀ d η k H μ σ * Real.log T ^ 2 / (2 * Real.pi * d) riemannZeta.N' σ T KLN.CC₁ I.H₀ α d δ k H σ * Real.log (k * T) ^ (2 * σ) * Real.log T ^ (5 - 4 * σ) * T ^ (8 / 3 * (1 - σ)) / (2 * Real.pi * d) + KLN.CC₂ I.H₀ d η k H μ σ * Real.log T ^ 2 / (2 * Real.pi * d)
        noncomputable def FKS.corollary_2_9 {σ₁ σ₂ α δ d CC_1 c₁ CC_2 c₂ : } (h : (σ₁, σ₂, α, δ, d, CC_1, c₁, CC_2, c₂) table_8) :
        Equations
          Instances For

            Need to merge all the individual estimates above into one single estimate

            Equations
              Instances For
                noncomputable def FKS.Inputs.default :
                Equations
                  Instances For
                    noncomputable def FKS.Inputs.RvM (I : Inputs) (U : ) :
                    Equations
                      Instances For
                        noncomputable def FKS.Inputs.B₁ (I : Inputs) (U V : ) :
                        Equations
                          Instances For
                            theorem FKS.lemma_2_1 (I : Inputs) {U V : } (hU : U 1) (hV : V U) :
                            (riemannZeta.zeroes_sum Set.univ (Set.Ico U V) fun (ρ : ) => 1 / ρ.im) I.B₁ U V
                            theorem FKS.corollary_2_3 (I : Inputs) {V : } (hV : V > I.T₀) :
                            (riemannZeta.zeroes_sum Set.univ (Set.Ioo 0 V) fun (ρ : ) => 1 / ρ.im) < I.S₀ + I.B₁ I.T₀ V
                            noncomputable def FKS.s₀ (σ U V : ) :
                            Equations
                              Instances For
                                noncomputable def Real.Gamma.incomplete (s x : ) :
                                Equations
                                  Instances For
                                    noncomputable def Complex.Gamma.incomplete (s : ) (x : ) :
                                    Equations
                                      Instances For
                                        noncomputable def FKS.Inputs.B₀ (I : Inputs) (σ U V : ) :
                                        Equations
                                          Instances For
                                            theorem FKS.lemma_2_5 (I : Inputs) {σ U V : } (hT₀ : I.ZDB.T₀ 2) ( : σ 5 / 8) (hσ' : σ I.ZDB.σ_range) (hU : U I.ZDB.T₀) (hV : V > U) :
                                            s₀ σ U V I.B₀ σ U V
                                            theorem FKS.remark_2_6_a (x : ) (hx : 0 x) :
                                            Real.Gamma.incomplete 3 x = (x ^ 2 + 2 * (x + 1)) * Real.exp (-x)
                                            theorem FKS.remark_2_6_b (s : ) (h : s > 1) :
                                            Filter.Tendsto (fun (x : ) => Real.Gamma.incomplete s x / (x ^ (s - 1) * Real.exp (-x))) Filter.atTop (nhds 1)
                                            theorem FKS.theorem_3_1 {x T : } (hx : x > Real.exp 50) (hodd : ∃ (X : ), Odd X x = X / 2) (hT : T Set.Ioo 50 x) :
                                            x (riemannZeta.zeroes_sum (Set.Ioo 0 1) (Set.Ioo (-T) T) fun (ρ : ) => x ^ (ρ - 1) / ρ) + 2 * Real.log x ^ 2 / T
                                            theorem FKS.theorem_3_2 (α ω : ) ( : α Set.Ioc 0 (1 / 2)) ( : ω Set.Icc 0 1) :
                                            ∃ (M : ) (xM : ), ∀ (x T : ), T Set.Ioo (max 51 (Real.log x)) ((x ^ α - 2) / 5)TstarSet.Icc T (2.45 * T), xxM, (Chebyshev.psi x) - (x - riemannZeta.zeroes_sum (Set.Ioo 0 1) (Set.Ioo (-Tstar) Tstar) fun (ρ : ) => x ^ ρ / ρ) M * x / T * Real.log x ^ (1 - ω)
                                            noncomputable def FKS.ε₁ (x T : ) :
                                            Equations
                                              Instances For
                                                theorem FKS.proposition_3_4 {x T : } (hx : x > Real.exp 50) (hT : T Set.Ioo (3 * Real.log x) (x / 3)) :
                                                x (riemannZeta.zeroes_sum (Set.Ioo 0 1) (Set.Ioo (-T) T) fun (ρ : ) => x ^ (ρ - 1) / ρ) + ε₁ x T
                                                noncomputable def FKS.riemannZeta.Sigma (T x a b : ) :
                                                Equations
                                                  Instances For
                                                    noncomputable def FKS.ε₂ (I : Inputs) (x σ₁ T : ) :
                                                    Equations
                                                      Instances For
                                                        theorem FKS.proposition_3_6 (I : Inputs) {σ₁ T x : } (hσ_1 : σ₁ Set.Icc 0.5 1) (hT : T > I.T₀) (x✝ : ) :
                                                        riemannZeta.Sigma T x✝ 0 σ₁ ε₂ I x✝ σ₁ T
                                                        noncomputable def FKS. (H₀ R σ : ) :
                                                        Equations
                                                          Instances For
                                                            noncomputable def FKS.σn (σ₁ σ₂ : ) (n N : ) :
                                                            Equations
                                                              Instances For
                                                                noncomputable def FKS.Hn (H₀ R σ₁ σ₂ : ) (n N : ) :
                                                                Equations
                                                                  Instances For
                                                                    theorem FKS.remark_3_7 {H₀ R σ : } ( : σ < 1 - 1 / (R * Real.log H₀)) :
                                                                    H₀ R σ = H₀
                                                                    noncomputable def FKS.ε₃ (I : Inputs) (x σ₁ σ₂ : ) (N : ) (T : ) :
                                                                    Equations
                                                                      Instances For
                                                                        theorem FKS.proposition_3_8 (I : Inputs) (x : ) {σ₁ σ₂ : } (N : ) (T : ) (hσ₁ : σ₁ Set.Icc (5 / 8) 1) (hσ₂ : σ₂ Set.Ioc σ₁ 1) ( : Set.Icc σ₁ σ₂ I.ZDB.σ_range) (hT : T I.H₀) :
                                                                        riemannZeta.Sigma T x σ₁ σ₂ ε₃ I x σ₁ σ₂ N T
                                                                        theorem FKS.corollary_3_10 {σ₁ σ₂ T x : } (hσ₁ : σ₁ Set.Icc 0.9 1) (hσ₂ : σ₂ Set.Ioc σ₁ 1) :
                                                                        riemannZeta.Sigma T x σ₁ σ₂ 125994e-8 * x ^ (σ₂ - 1)
                                                                        theorem FKS.proposition_3_11 (I : Inputs) {σ₂ T x : } (K : ) (hσ₂ : σ₂ Set.Ioc (5 / 8) 1) (t_seq : Fin (K + 2)) (ht0 : t_seq 0 = max ( I.H₀ I.R σ₂) (Real.exp ((Real.log x) / I.R))) (htK : t_seq (Fin.last (K + 1)) = T) (ht_incr : StrictMono t_seq) :
                                                                        riemannZeta.Sigma T x σ₂ 1 2 * riemannZeta.N' σ₂ T * x ^ (-1 / (I.R * Real.log (t_seq 0))) / t_seq 0 riemannZeta.Sigma T x σ₂ 1 2 * kFinset.Ioo 0 (Fin.last (K + 1)), riemannZeta.N' σ₂ (t_seq k) * (x ^ (-1 / (I.R * Real.log (t_seq (k - 1)))) / t_seq (k - 1) - x ^ (-1 / (I.R * Real.log (t_seq k))) / t_seq k) + x ^ (-1 / (I.R * Real.log (t_seq (Fin.last K).castSucc))) / t_seq (Fin.last K).castSucc * riemannZeta.N' σ₂ T
                                                                        noncomputable def FKS.ε₄ (I : Inputs) (t₀ x σ₂ : ) (K : ) (T : ) :
                                                                        Equations
                                                                          Instances For
                                                                            theorem FKS.corollary_3_12 (I : Inputs) {σ₂ t₀ T x : } (K : ) (hσ₂ : σ₂ Set.Ioc (5 / 8) 1) (ht₀ : t₀ = max ( I.H₀ I.R σ₂) (Real.exp ((Real.log x) / I.R))) (hT : T > t₀) (ZDB : zero_density_bound) :
                                                                            riemannZeta.Sigma T x σ₂ 1 ε₄ I t₀ x σ₂ K T
                                                                            theorem FKS.proposition_3_14 (I : Inputs) {c : } (K : ) (hc : c > 1) (hK : K 2) :
                                                                            have t₀ := fun (x : ) => Real.exp ((Real.log x) / I.R); have T := fun (x : ) => t₀ x ^ c; have σ₂ := fun (x : ) => 1 - 2 / (I.R * Real.log (t₀ x)); have w₁ := 1 + (c - 1) / K; have C := 2 * I.ZDB.c₁ (σ₂ 1) * Real.exp (16 * w₁ / (3 * I.R)) * w₁ ^ 3; have f := fun (x : ) => C * Real.log (t₀ x) ^ (3 + 4 / (I.R * Real.log (t₀ x))) / t₀ x ^ 2; Asymptotics.IsEquivalent Filter.atTop (fun (x : ) => ε₄ I (t₀ x) x (σ₂ x) K (T x)) f AntitoneOn (fun (x : ) => ε₄ I (t₀ x) x (σ₂ x) K (T x)) (Set.Ioi (Real.exp (I.R * Real.exp 2))) AntitoneOn (fun (x : ) => ε₄ I (t₀ x) x (σ₂ x) K (T x) * t₀ x ^ 2 / Real.log (t₀ x) ^ 3) (Set.Ioi (Real.exp (I.R * Real.exp 2)))
                                                                            noncomputable def FKS.ε (I : Inputs) (x₀ σ₂ c : ) (N K : ) :
                                                                            Equations
                                                                              Instances For
                                                                                theorem FKS.theorem_1_1 (I : Inputs) (x₀ σ₂ c : ) (N K : ) (hlog : Real.log x₀ > 1000) (hσ₂ : σ₂ Set.Ioo 0.9 1) (hc : c Set.Icc 2 30) (hN : N 1) (hK : K 1) (x : ) :
                                                                                x x₀ x ε I x₀ σ₂ c N K
                                                                                Equations
                                                                                  Instances For
                                                                                    theorem FKS.theorem_1_1b {log_x0 σ2 c N K ε1 ε2 ε3 ε4 ε_total : } (h : (log_x0, σ2, ε1, ε2, ε3, ε4, ε_total) table_5) (x : ) :
                                                                                    Real.log x log_x0 x ε_total
                                                                                    theorem FKS.lemma_5_3 {x : } (h : Real.log x Set.Ioc 0 2100) :
                                                                                    x 2 * Real.log x ^ (3 / 2) * Real.exp (-0.8476836 * (Real.log x))
                                                                                    theorem FKS.lemma_5_4 {x : } (h : Real.log x Set.Ioc 2100 200000) :
                                                                                    x 9.22022 * Real.log x ^ (3 / 2) * Real.exp (-0.8476836 * (Real.log x))
                                                                                    noncomputable def FKS.A (x₀ : ) :
                                                                                    Equations
                                                                                      Instances For
                                                                                        theorem FKS.theorem_1_2b (x₀ : ) (h : Real.log x₀ 1000) :
                                                                                        Eψ.classicalBound (A x₀) (3 / 2) 2 5.5666305 x₀
                                                                                        theorem FKS.FKS_corollary_1_3 :
                                                                                        Eψ.classicalBound 121.096 (3 / 2) 2 5.5666305 2
                                                                                        theorem FKS.FKS_corollary_1_4 :
                                                                                        Eψ.classicalBound 9.22022 (3 / 2) 0.8476836 1 2