| Name | Category | Theorems |
FG2 π | CompOp | 6 mathmath: countable_of_fg2, to_sato_is_bijective, to_sato_range, to_sato_is_injective, to_sato_is_surjective, free_group_of_rank_two_is_self_paradoxical
|
MAT π | CompOp | 22 mathmath: inv7lemma, COB_mat_is_ortho, rot_mat_inner_is_special, mtinv_lem2, M_s_normed_transpose_def, rot_mat_inner_comp_add, s_i_op_n_equiv, to_MAT_pow, msinv_lem2, to_MAT_mul, rot_mat_is_special, v2m_equiv, msinv_lem, M_t_normed_transpose_def, to_MAT_prod, t_i_op_n_equiv, mtinv_lem, M_t_normed_is_special, to_MAT_inj, M_s_normed_is_special, rot_mat_comp_add, diagonal_const_comm
|
R3 π | CompOp | 77 mathmath: countable_bad_skew_rot, spar_up_rot, s2_uncountable, orth_dim_3, same_char, spar_add, hmo_is_surjective, rot_iso_pow_lemma, orth_nonempty, hf, SO3_smul_def, COB_MB_is_ortho, x_axis_on_sphere, hausdorff_paradox, normed_in_S2, BadAtN_skew_rot_countable, COB_to_basis, srot_containment, orth_dim_2, so3_diff_lin, instSMulCommClassRealSubtypeMatrixFinOfNatNatMemSubmonoidSO3R3, spar_up_2, rot_iso_fixed_back, cob_mat_other_repr, rips_add, banach_tarski_paradox_B3, skew_rot_comp_add, operp_up_2, cone_lemma, so3_fixes_norm, rot_pow_lemma, isometry_of_so3, internal_pr, BadAtN_skew_rot, triv_rot_inner, fixed_lemma, triv_so3, triv_rot_by_parts, ih, R3_dim_3, lb_card_s2, banach_tarski_paradox_s2, origin_cont, rot_iso_comp_add, same_char_0, rot_comp_add, f_triv_g3, up_mem, SO3_G3_action_equiv, orth_toMatrix_mulVec_repr, K_id, triv_rot_iso, so3_fixes_s2, block_1_lem, dim_ker, same_action, inner_as_to_matrix_MB, bad_as_union_skew_rot, operp_add, hmo_is_bijective, same_mult, rot_containment_S2, spar_operp, inner_as_to_matrix, el_by_parts, operp_up, b3min_is_trunc_cone_s2, rot_iso_power_lemma, block_repr, SATO_smul_def, hmo_is_injective, banach_tarski_paradox_B3_minus_origin, rot_iso_comp, trunc_cone_sub_ball, skew_rot_power_lemma, operp_spar, block_2_lem
|
R3_raw π | CompOp | β |
S2 π | CompOp | 13 mathmath: s2_uncountable, x_axis_on_sphere, hausdorff_paradox, normed_in_S2, cone_lemma, fixed_lemma, trunc_cone_lemma, ih, lb_card_s2, banach_tarski_paradox_s2, so3_fixes_s2, rot_containment_S2, b3min_is_trunc_cone_s2
|
SO3 π | CompOp | 47 mathmath: hmo_is_surjective, to_sato_is_bijective, s_i_op_n_equiv_2, so3_invs_coe, idlem, SO3_smul_def, to_sato_range, countable_bad_rots, hausdorff_paradox, s_mem, to_sato_is_injective, s_i_op_n_def, so3_diff_lin, rot_mat_inner_is_special, instSMulCommClassRealSubtypeMatrixFinOfNatNatMemSubmonoidSO3R3, rot_containment_general, bad_as_union_rot, S2_equidecomposible_of_S2_minus_countable, mapMatrix_is_map, s_i_op_n_equiv, t_i_op_n_def, triv_rot, so3_fixes_norm, to_sato_is_surjective, rot_pow_lemma, isometry_of_so3, rot_mat_is_special, fixed_lemma, triv_so3, banach_tarski_paradox_s2, t_mem, same_char_0, rot_comp_add, so3_cancel_lem, SO3_G3_action_equiv, t_i_op_n_equiv, so3_fixes_s2, same_action, M_t_normed_is_special, hmo_is_bijective, rot_containment_S2, M_s_normed_is_special, cast_root_mult1, t_i_op_n_equiv_2, SATO_smul_def, hmo_is_injective, banach_tarski_paradox_B3_minus_origin
|
SO3_action_on_MAT π | CompOp | β |
SO3_action_on_R3 π | CompOp | 13 mathmath: countable_bad_rots, hausdorff_paradox, rot_containment_general, bad_as_union_rot, S2_equidecomposible_of_S2_minus_countable, rot_pow_lemma, isometry_of_so3, triv_so3, banach_tarski_paradox_s2, rot_comp_add, so3_fixes_s2, rot_containment_S2, banach_tarski_paradox_B3_minus_origin
|
chartype π | CompOp | 6 mathmath: all_sinv_equiv, if_not_all_init_s_w, if_not_all_sinv_w, countable_chartype, finite_chartype, reduce_invRev_right_cancel
|
f π | CompOp | 9 mathmath: collapse_iter, rot_pow_lemma, isometry_of_so3, triv_so3, rot_comp_add, f_triv_g3, so3_fixes_s2, rot_containment_S2, conj_bad_el
|
normed π | CompOp | 3 mathmath: normed_in_S2, cone_lemma, trunc_cone_lemma
|
origin π | CompOp | 6 mathmath: countable_bad_skew_rot, BadAtN_skew_rot_countable, srot_containment, BadAtN_skew_rot, origin_cont, bad_as_union_skew_rot
|
so3_has_inv π | CompOp | β |
to_R3 π | CompOp | 2 mathmath: SO3_smul_def, SATO_smul_def
|
Ο π | CompOp | β |
Οchar π | CompOp | 3 mathmath: collapse_replics_1, Ο_def, collapse_replics_2
|
Ο π | CompOp | β |
Οchar π | CompOp | 1 mathmath: Ο_def
|