Documentation

BanachTarski.Common

def f {X : Type u_1} {G : Type u_2} [Group G] [MulAction G X] (g : G) :
XX

Defs used throughout.

Equations
Instances For
    theorem fcomp {X : Type u_1} {G : Type u_2} [Group G] [MulAction G X] (g h : G) :
    (fun (x : X) => (g * h) x) = (fun (x : X) => g x) fun (x : X) => h x
    theorem finj {X : Type u_1} {G : Type u_2} [Group G] [MulAction G X] (g : G) :
    Function.Injective fun (x : X) => g x
    @[reducible, inline]
    abbrev FG2 :
    Equations
    Instances For
      def σchar :
      Fin 2
      Equations
      Instances For
        def τchar :
        Fin 2
        Equations
        Instances For
          @[reducible, inline]
          abbrev σ :
          Equations
          Instances For
            @[reducible, inline]
            abbrev τ :
            Equations
            Instances For
              @[reducible, inline]
              abbrev chartype :
              Equations
              Instances For
                theorem wopts (w : chartype) :
                theorem split2 (i : Fin 2) :
                i = 0 i = 1
                @[reducible, inline]
                abbrev MAT :
                Equations
                Instances For
                  @[reducible, inline]
                  abbrev R3_raw :
                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev R3 :
                    Equations
                    Instances For
                      def to_R3 (v : R3_raw) :
                      Equations
                      Instances For
                        def origin :
                        Equations
                        Instances For
                          def S2 :
                          Equations
                          Instances For
                            @[reducible, inline]
                            abbrev SO3 :
                            Equations
                            Instances For
                              theorem so3_invs_coe (g : SO3) :
                              (↑g)⁻¹ = g⁻¹
                              instance so3_has_inv (g : SO3) :
                              Equations
                              Equations
                              theorem SO3_smul_def (g : SO3) (v : R3) :
                              g v = to_R3 ((↑g).mulVec v.ofLp)
                              noncomputable def normed :
                              R3R3
                              Equations
                              Instances For
                                theorem normed_in_S2 {v : R3} :
                                v 0normed v S2
                                theorem ml {i j : } {m n : Fin (i * j)} :
                                theorem ml2 {i j : } {m n : Fin (i * j)} :