Documentation Verification Report

SatoUtils

πŸ“ Source: BanachTarski/SatoUtils.lean

Statistics

MetricCount
DefinitionsS_f, TailPred_f, Z3_raw, ZMAT, all_s_f, all_sinv_f, first_is_sinv_f, lSet_type_f, last_is_sigma_f, leading_others_as_nat_f, leading_s_as_nat_f, max_fin_f, mod7_Z, n_trail_sinv_f, sev_mat, sev_mat_Z, seventh_mat, to_MAT, trailing_as_nat_f
19
TheoremsTP_holds_of_zero_f, all_sinv_equiv, collapse_replics_1, collapse_replics_2, diagonal_const_comm, drop_eq_last, if_not_all_init_s_w, if_not_all_sinv_w, inv7lemma, isReduced_of_invRev_of_isReduced, isReduced_of_replicate, isreduced_of_append_of_reduced_mismatching_boundary, isreduced_of_drop_of_reduced, isreduced_of_take_of_reduced, leading_trailing, mod7_Z_additive, mod7_Z_idempotent, mod_lemma_Z, ne_S_f, reduce_invRev_right_cancel, sev_mat_Z_mod_is_zero_lemma, sevsevlem, to_MAT_inj, to_MAT_mul, to_MAT_pow, to_MAT_prod, to_MAT_transp, wolog_zero, zip_lemma
29
Total48

(root)

Definitions

NameCategoryTheorems
S_f πŸ“–CompOp
1 mathmath: ne_S_f
TailPred_f πŸ“–CompOp
1 bridgebridge: TP_holds_of_zero_f
Z3_raw πŸ“–CompOp
2 mathmath: mod7_Z_additive, sev_mat_Z_mod_is_zero_lemma
ZMAT πŸ“–CompOp
6 mathmath: fnlem_t, to_MAT_pow, to_MAT_mul, to_MAT_prod, to_MAT_inj, fnlem_s
all_s_f πŸ“–MathDefβ€”
all_sinv_f πŸ“–MathDefβ€”
first_is_sinv_f πŸ“–MathDefβ€”
lSet_type_f πŸ“–CompOp
1 mathmath: ne_S_f
last_is_sigma_f πŸ“–MathDefβ€”
leading_others_as_nat_f πŸ“–CompOpβ€”
leading_s_as_nat_f πŸ“–CompOp
2 mathmath: if_not_all_init_s_w, leading_trailing
max_fin_f πŸ“–CompOpβ€”
mod7_Z πŸ“–CompOp
8 mathmath: mod7_Z_additive, mod_lemma_Z, l3, l1, mod7_Z_idempotent, l4, sev_mat_Z_mod_is_zero_lemma, l2
n_trail_sinv_f πŸ“–CompOpβ€”
sev_mat πŸ“–CompOp
1 mathmath: inv7lemma
sev_mat_Z πŸ“–CompOp
1 mathmath: sev_mat_Z_mod_is_zero_lemma
seventh_mat πŸ“–CompOp
1 mathmath: inv7lemma
to_MAT πŸ“–CompOp
11 mathmath: to_MAT_transp, msi_def, M_s_normed_transpose_def, to_MAT_pow, to_MAT_mul, M_t_normed_transpose_def, to_MAT_prod, mti_def, ms_def, to_MAT_inj, mt_def
trailing_as_nat_f πŸ“–CompOp
2 mathmath: if_not_all_sinv_w, leading_trailing

Theorems

NameKindAssumesProvesValidatesDepends On
TP_holds_of_zero_f πŸ“–bridging (complete)β€”TailPred_fTailPred_fβ€”
all_sinv_equiv πŸ“–mathematicalall_sinv_fchartypeβ€”ne_S_f
collapse_replics_1 πŸ“–mathematicalβ€”Οƒcharβ€”reduce_invRev_right_cancel
collapse_replics_2 πŸ“–mathematicalβ€”Οƒcharβ€”collapse_replics_1
diagonal_const_comm πŸ“–mathematicalβ€”MATβ€”β€”
drop_eq_last πŸ“–β€”β€”β€”β€”β€”
if_not_all_init_s_w πŸ“–mathematicalall_s_f
first_is_sinv_f
chartype
leading_s_as_nat_f
β€”all_sinv_equiv
if_not_all_sinv_w
leading_trailing
isReduced_of_invRev_of_isReduced
if_not_all_sinv_w πŸ“–mathematicalall_sinv_f
last_is_sigma_f
chartype
trailing_as_nat_f
β€”ne_S_f
isreduced_of_take_of_reduced
wopts
inv7lemma πŸ“–mathematicalβ€”MAT
sev_mat
seventh_mat
β€”β€”
isReduced_of_invRev_of_isReduced πŸ“–β€”β€”β€”β€”β€”
isReduced_of_replicate πŸ“–β€”β€”β€”β€”β€”
isreduced_of_append_of_reduced_mismatching_boundary πŸ“–β€”β€”β€”β€”β€”
isreduced_of_drop_of_reduced πŸ“–β€”β€”β€”β€”β€”
isreduced_of_take_of_reduced πŸ“–β€”β€”β€”β€”β€”
leading_trailing πŸ“–mathematicalβ€”trailing_as_nat_f
leading_s_as_nat_f
β€”β€”
mod7_Z_additive πŸ“–mathematicalβ€”mod7_Z
Z3_raw
β€”β€”
mod7_Z_idempotent πŸ“–mathematicalβ€”mod7_Zβ€”β€”
mod_lemma_Z πŸ“–mathematicalβ€”mod7_Zβ€”mod7_Z_additive
mod7_Z_idempotent
ne_S_f πŸ“–mathematicalβ€”lSet_type_f
S_f
β€”TP_holds_of_zero_f
reduce_invRev_right_cancel πŸ“–mathematicalβ€”chartypeβ€”β€”
sev_mat_Z_mod_is_zero_lemma πŸ“–mathematicalβ€”mod7_Z
sev_mat_Z
Z3_raw
β€”β€”
sevsevlem πŸ“–β€”β€”β€”β€”β€”
to_MAT_inj πŸ“–mathematicalβ€”ZMAT
MAT
to_MAT
β€”β€”
to_MAT_mul πŸ“–mathematicalβ€”to_MAT
ZMAT
MAT
β€”β€”
to_MAT_pow πŸ“–mathematicalβ€”to_MAT
ZMAT
MAT
β€”to_MAT_prod
to_MAT_prod πŸ“–mathematicalβ€”to_MAT
ZMAT
MAT
β€”to_MAT_mul
to_MAT_transp πŸ“–mathematicalβ€”to_MATβ€”β€”
wolog_zero πŸ“–β€”FG2β€”β€”ne_S_f
if_not_all_sinv_w
collapse_replics_2
isreduced_of_append_of_reduced_mismatching_boundary
if_not_all_init_s_w
Οƒ_def
collapse_replics_1
isReduced_of_replicate
zip_lemma πŸ“–β€”MATβ€”β€”diagonal_const_comm

---

← Back to Index