Documentation

BanachTarski.SatoUtils

@[reducible, inline]
abbrev ZMAT :

A bunch of definitions and lemmas used in defining the Sato subgroup.

Equations
Instances For
    @[reducible, inline]
    abbrev Z3_raw :
    Equations
    Instances For
      def to_MAT (A : ZMAT) :
      Equations
      Instances For
        theorem to_MAT_pow {A : ZMAT} {N : β„•} :
        to_MAT (A ^ N) = to_MAT A ^ N
        def mod7_Z (v : Z3_raw) :
        Equations
        Instances For
          theorem drop_eq_last {Ξ± : Type u_1} (M : β„•) (L : List Ξ±) {X : Ξ±} :
          L.length = M + 1 ∧ L.getLast? = some X β†’ List.drop M L = [X]
          theorem diagonal_const_comm (d : ℝ) (k : β„•) (M : MAT) :
          (Matrix.diagonal fun (x : Fin 3) => d) ^ k * M = M * (Matrix.diagonal fun (x : Fin 3) => d) ^ k
          theorem zip_lemma (N : β„•) (mats : List MAT) (d : ℝ) :
          mats.length = N β†’ (Matrix.diagonal fun (x : Fin 3) => d) ^ N * mats.prod = (List.map (fun (M : MAT) => (Matrix.diagonal fun (x : Fin 3) => d) * M) mats).prod
          Equations
          Instances For
            noncomputable def seventh_mat :
            Equations
            Instances For
              theorem sevsevlem :
              (7⁻¹ β€’ 7⁻¹ β€’ fun (x : Fin 3) => 49) = fun (x : Fin 3) => 1

              The entire remainder of the module is devoted to the proof of a -- fact used in the definition of the Sato subgroup: -- That wiithout loss of generality we can assume a member of the -- kernel ends in Οƒ lemma wolog_zero {G : Type} [Group G] (h : FG2 β†’* G) (a : FG2) : (a β‰  1) ∧ (h a = 1) β†’ βˆƒa2 : FG2, (a2 β‰  1) ∧ (h a2 = 1) ∧ (FreeGroup.toWord a2).getLast? = some (0, true)

              theorem isreduced_of_append_of_reduced_mismatching_boundary {Ξ± : Type u} {L M : List (Ξ± Γ— Bool)} (p1 p2 : Ξ± Γ— Bool) (pl : L.getLast? = some p1) (ph : M.head? = some p2) :
              FreeGroup.IsReduced L ∧ FreeGroup.IsReduced M ∧ (p1.1 = p2.1 β†’ p1.2 = p2.2) β†’ FreeGroup.IsReduced (L ++ M)
              @[reducible, inline]
              Equations
              Instances For
                Equations
                Instances For
                  Equations
                  Instances For
                    Equations
                    Instances For
                      Equations
                      Instances For
                        theorem wolog_zero {G : Type} [Group G] (h : FG2 β†’* G) (a : FG2) :
                        a β‰  1 ∧ h a = 1 β†’ βˆƒ (a2 : FG2), a2 β‰  1 ∧ h a2 = 1 ∧ (FreeGroup.toWord a2).getLast? = some (0, true)