Documentation

Mathlib.Algebra.Azumaya.Matrix

Matrix algebra is an Azumaya algebra over R #

In this file we prove that finite-dimensional matrix algebra Matrix n n R over R is an Azumaya algebra where R is a commutative ring.

Main Results #

@[reducible, inline]

AlgHom.mulLeftRight for matrix algebra sends basis Eįµ¢ā±¼āŠ—Eā‚–ā‚— to the map f : Eā‚›ā‚œ ↦ Eᵢⱼ * Eā‚›ā‚œ * Eā‚–ā‚— = Ī“ā±¼ā‚›Ī“ā‚œā‚–Eᵢₗ, therefore we construct the inverse by sending f to āˆ‘įµ¢ā‚—ā‚›ā‚œ f(Eā‚›ā‚œ)ᵢₗ • Eįµ¢ā‚›āŠ—Eā‚œā‚—.

Equations
    Instances For
      theorem IsAzumaya.matrix (R : Type u_1) (n : Type u_2) [CommSemiring R] [Fintype n] [DecidableEq n] [Nonempty n] :
      IsAzumaya R (Matrix n n R)

      A nontrivial matrix ring over R is an Azumaya algebra over R.