Matrix algebra is an Azumaya algebra over R #
In this file we prove that finite-dimensional matrix algebra Matrix n n R over R
is an Azumaya algebra where R is a commutative ring.
Main Results #
IsAzumaya.Matrix: Finite-dimensional matrix algebra overRis Azumaya.
@[reducible, inline]
abbrev
AlgHom.mulLeftRightMatrix_inv
(R : Type u_1)
(n : Type u_2)
[CommSemiring R]
[Fintype n]
[DecidableEq n]
:
AlgHom.mulLeftRight for matrix algebra sends basis EᵢⱼāEāā to
the map f : Eāā ⦠Eᵢⱼ * Eāā * Eāā = ΓⱼāĪ“āāEįµ¢ā, therefore we construct the inverse
by sending f to āįµ¢āāā f(Eāā)įµ¢ā ⢠Eįµ¢āāEāā.
Equations
Instances For
theorem
AlgHom.mulLeftRightMatrix.inv_comp
(R : Type u_1)
(n : Type u_2)
[CommSemiring R]
[Fintype n]
[DecidableEq n]
:
theorem
AlgHom.mulLeftRightMatrix.comp_inv
(R : Type u_1)
(n : Type u_2)
[CommSemiring R]
[Fintype n]
[DecidableEq n]
:
theorem
IsAzumaya.matrix
(R : Type u_1)
(n : Type u_2)
[CommSemiring R]
[Fintype n]
[DecidableEq n]
[Nonempty n]
:
A nontrivial matrix ring over R is an Azumaya algebra over R.