Documentation

Mathlib.Algebra.BigOperators.Group.Finset.Lemmas

Miscellaneous lemmas on big operators #

The lemmas in this file have been moved out of Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean to reduce its imports.

theorem MonoidHom.coe_finset_prod {Îč : Type u_1} {M : Type u_3} {N : Type u_4} [MulOneClass M] [CommMonoid N] (f : Îč → M →* N) (s : Finset Îč) :
⇑(∏ x ∈ s, f x) = ∏ x ∈ s, ⇑(f x)
theorem AddMonoidHom.coe_finset_sum {Îč : Type u_1} {M : Type u_3} {N : Type u_4} [AddZeroClass M] [AddCommMonoid N] (f : Îč → M →+ N) (s : Finset Îč) :
⇑(∑ x ∈ s, f x) = ∑ x ∈ s, ⇑(f x)
@[simp]
theorem MonoidHom.finset_prod_apply {Îč : Type u_1} {M : Type u_3} {N : Type u_4} [MulOneClass M] [CommMonoid N] (f : Îč → M →* N) (s : Finset Îč) (b : M) :
(∏ x ∈ s, f x) b = ∏ x ∈ s, (f x) b

See also Finset.prod_apply, with the same conclusion but with the weaker hypothesis f : α → M → N

@[simp]
theorem AddMonoidHom.finset_sum_apply {Îč : Type u_1} {M : Type u_3} {N : Type u_4} [AddZeroClass M] [AddCommMonoid N] (f : Îč → M →+ N) (s : Finset Îč) (b : M) :
(∑ x ∈ s, f x) b = ∑ x ∈ s, (f x) b

See also Finset.sum_apply, with the same conclusion but with the weaker hypothesis f : α → M → N

theorem Finset.mulSupport_prod {Îč : Type u_1} {Îș : Type u_2} {M : Type u_3} [CommMonoid M] (s : Finset Îč) (f : Îč → Îș → M) :
(Function.mulSupport fun (x : Îș) => ∏ i ∈ s, f i x) ⊆ ⋃ i ∈ s, Function.mulSupport (f i)
theorem Finset.support_sum {Îč : Type u_1} {Îș : Type u_2} {M : Type u_3} [AddCommMonoid M] (s : Finset Îč) (f : Îč → Îș → M) :
(Function.support fun (x : Îș) => ∑ i ∈ s, f i x) ⊆ ⋃ i ∈ s, Function.support (f i)
theorem Finset.isSquare_prod {Îč : Type u_1} {M : Type u_3} [CommMonoid M] {s : Finset Îč} (f : Îč → M) (h : ∀ c ∈ s, IsSquare (f c)) :
IsSquare (∏ i ∈ s, f i)
theorem Finset.even_sum {Îč : Type u_1} {M : Type u_3} [AddCommMonoid M] {s : Finset Îč} (f : Îč → M) (h : ∀ c ∈ s, Even (f c)) :
Even (∑ i ∈ s, f i)