Miscellaneous lemmas on big operators #
The lemmas in this file have been moved out of
Mathlib/Algebra/BigOperators/Group/Finset/Basic.lean to reduce its imports.
theorem
MonoidHom.coe_finset_prod
{Îč : Type u_1}
{M : Type u_3}
{N : Type u_4}
[MulOneClass M]
[CommMonoid N]
(f : Îč â M â* N)
(s : Finset Îč)
:
theorem
AddMonoidHom.coe_finset_sum
{Îč : Type u_1}
{M : Type u_3}
{N : Type u_4}
[AddZeroClass M]
[AddCommMonoid N]
(f : Îč â M â+ N)
(s : Finset Îč)
:
@[simp]
theorem
MonoidHom.finset_prod_apply
{Îč : Type u_1}
{M : Type u_3}
{N : Type u_4}
[MulOneClass M]
[CommMonoid N]
(f : Îč â M â* N)
(s : Finset Îč)
(b : M)
:
See also Finset.prod_apply, with the same conclusion but with the weaker hypothesis
f : α â M â N
@[simp]
theorem
AddMonoidHom.finset_sum_apply
{Îč : Type u_1}
{M : Type u_3}
{N : Type u_4}
[AddZeroClass M]
[AddCommMonoid N]
(f : Îč â M â+ N)
(s : Finset Îč)
(b : M)
:
See also Finset.sum_apply, with the same conclusion but with the weaker hypothesis
f : α â M â N
theorem
Finset.mulSupport_prod
{Îč : Type u_1}
{Îș : Type u_2}
{M : Type u_3}
[CommMonoid M]
(s : Finset Îč)
(f : Îč â Îș â M)
:
theorem
Finset.support_sum
{Îč : Type u_1}
{Îș : Type u_2}
{M : Type u_3}
[AddCommMonoid M]
(s : Finset Îč)
(f : Îč â Îș â M)
:
theorem
Finset.isSquare_prod
{Îč : Type u_1}
{M : Type u_3}
[CommMonoid M]
{s : Finset Îč}
(f : Îč â M)
(h : â c â s, IsSquare (f c))
:
IsSquare (â i â s, f i)
theorem
Finset.even_sum
{Îč : Type u_1}
{M : Type u_3}
[AddCommMonoid M]
{s : Finset Îč}
(f : Îč â M)
(h : â c â s, Even (f c))
:
Even (â i â s, f i)