Sums and products over preimages of finite sets. #
theorem
Finset.prod_preimage'
{ι : Type u_1}
{κ : Type u_2}
{β : Type u_3}
[CommMonoid β]
(f : ι → κ)
[DecidablePred fun (x : κ) => x ∈ Set.range f]
(s : Finset κ)
(hf : Set.InjOn f (f ⁻¹' ↑s))
(g : κ → β)
:
theorem
Finset.sum_preimage'
{ι : Type u_1}
{κ : Type u_2}
{β : Type u_3}
[AddCommMonoid β]
(f : ι → κ)
[DecidablePred fun (x : κ) => x ∈ Set.range f]
(s : Finset κ)
(hf : Set.InjOn f (f ⁻¹' ↑s))
(g : κ → β)
:
theorem
Finset.prod_preimage_of_bij
{ι : Type u_1}
{κ : Type u_2}
{β : Type u_3}
[CommMonoid β]
(f : ι → κ)
(s : Finset κ)
(hf : Set.BijOn f (f ⁻¹' ↑s) ↑s)
(g : κ → β)
:
theorem
Finset.sum_preimage_of_bij
{ι : Type u_1}
{κ : Type u_2}
{β : Type u_3}
[AddCommMonoid β]
(f : ι → κ)
(s : Finset κ)
(hf : Set.BijOn f (f ⁻¹' ↑s) ↑s)
(g : κ → β)
: