Documentation

Mathlib.Algebra.BigOperators.RingEquiv

Results about mapping big operators across ring equivalences #

theorem RingEquiv.map_list_prod {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R โ‰ƒ+* S) (l : List R) :
f l.prod = (List.map (โ‡‘f) l).prod

An isomorphism into the opposite ring acts on the product by acting on the reversed elements

theorem RingEquiv.map_multiset_prod {R : Type u_2} {S : Type u_3} [CommSemiring R] [CommSemiring S] (f : R โ‰ƒ+* S) (s : Multiset R) :
f s.prod = (Multiset.map (โ‡‘f) s).prod
theorem RingEquiv.map_prod {ฮฑ : Type u_1} {R : Type u_2} {S : Type u_3} [CommSemiring R] [CommSemiring S] (g : R โ‰ƒ+* S) (f : ฮฑ โ†’ R) (s : Finset ฮฑ) :
g (โˆ x โˆˆ s, f x) = โˆ x โˆˆ s, g (f x)
theorem RingEquiv.map_sum {ฮฑ : Type u_1} {R : Type u_2} {S : Type u_3} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (g : R โ‰ƒ+* S) (f : ฮฑ โ†’ R) (s : Finset ฮฑ) :
g (โˆ‘ x โˆˆ s, f x) = โˆ‘ x โˆˆ s, g (f x)