Documentation

Mathlib.Algebra.Category.Grp.Yoneda

Yoneda embeddings #

This file defines a few Yoneda embeddings for the category of commutative groups.

@[simp]
theorem CommGrpCat.coyoneda_obj_map (M : CommGrpCatแต’แต–) {Xโœ Yโœ : CommGrpCat} (f : Xโœ โŸถ Yโœ) :
@[simp]
theorem CommGrpCat.coyoneda_map_app {Xโœ Yโœ : CommGrpCatแต’แต–} (f : Xโœ โŸถ Yโœ) (N : CommGrpCat) :

The CommGrpCat-valued coyoneda embedding composed with the forgetful functor is the usual coyoneda embedding.

Equations
    Instances For

      The AddCommGrpCat-valued coyoneda embedding composed with the forgetful functor is the usual coyoneda embedding.

      Equations
        Instances For
          @[simp]
          theorem CommGrpCat.coyonedaForget_inv_app_app (X : CommGrpCatแต’แต–) (Xโœ : CommGrpCat) (aโœ : (CategoryTheory.coyoneda.obj X).obj Xโœ) :
          (coyonedaForget.inv.app X).app Xโœ aโœ = Hom.hom aโœ

          The Hom bifunctor sending a type X and a commutative group G to the commutative group X โ†’ G with pointwise operations.

          This is also the coyoneda embedding of Type into CommGrpCat-valued presheaves of commutative groups.

          Equations
            Instances For

              The Hom bifunctor sending a type X and a commutative group G to the commutative group X โ†’ G with pointwise operations.

              This is also the coyoneda embedding of Type into AddCommGrpCat-valued presheaves of commutative groups.

              Equations
                Instances For
                  @[simp]
                  theorem AddCommGrpCat.coyonedaType_obj_map (X : Type uแต’แต–) {Xโœ Yโœ : AddCommGrpCat} (f : Xโœ โŸถ Yโœ) :
                  (coyonedaType.obj X).map f = ofHom (Pi.addMonoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalAddMonoidHom (fun (a : Opposite.unop X) => โ†‘Xโœ) i))
                  @[simp]
                  theorem CommGrpCat.coyonedaType_obj_map (X : Type uแต’แต–) {Xโœ Yโœ : CommGrpCat} (f : Xโœ โŸถ Yโœ) :
                  (coyonedaType.obj X).map f = ofHom (Pi.monoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalMonoidHom (fun (a : Opposite.unop X) => โ†‘Xโœ) i))
                  @[simp]
                  theorem AddCommGrpCat.coyonedaType_map_app {Xโœ Yโœ : Type uแต’แต–} (f : Xโœ โŸถ Yโœ) (G : AddCommGrpCat) :
                  (coyonedaType.map f).app G = ofHom (Pi.addMonoidHom fun (i : Opposite.unop Yโœ) => Pi.evalAddMonoidHom (fun (a : Opposite.unop Xโœ) => โ†‘G) (f.unop i))
                  @[simp]
                  theorem CommGrpCat.coyonedaType_map_app {Xโœ Yโœ : Type uแต’แต–} (f : Xโœ โŸถ Yโœ) (G : CommGrpCat) :
                  (coyonedaType.map f).app G = ofHom (Pi.monoidHom fun (i : Opposite.unop Yโœ) => Pi.evalMonoidHom (fun (a : Opposite.unop Xโœ) => โ†‘G) (f.unop i))