Yoneda embeddings #
This file defines a few Yoneda embeddings for the category of commutative groups.
@[simp]
theorem
AddCommGrpCat.coyoneda_obj_map
(M : AddCommGrpCatแตแต)
{Xโ Yโ : AddCommGrpCat}
(f : Xโ โถ Yโ)
:
@[simp]
@[simp]
@[simp]
theorem
CommGrpCat.coyoneda_obj_map
(M : CommGrpCatแตแต)
{Xโ Yโ : CommGrpCat}
(f : Xโ โถ Yโ)
:
@[simp]
theorem
AddCommGrpCat.coyoneda_map_app
{Xโ Yโ : AddCommGrpCatแตแต}
(f : Xโ โถ Yโ)
(N : AddCommGrpCat)
:
@[simp]
theorem
CommGrpCat.coyoneda_map_app
{Xโ Yโ : CommGrpCatแตแต}
(f : Xโ โถ Yโ)
(N : CommGrpCat)
:
The CommGrpCat-valued coyoneda embedding composed with the forgetful functor is the usual
coyoneda embedding.
Equations
Instances For
The AddCommGrpCat-valued coyoneda embedding composed with the forgetful functor is the usual
coyoneda embedding.
Equations
Instances For
@[simp]
theorem
AddCommGrpCat.coyonedaForget_inv_app_app
(X : AddCommGrpCatแตแต)
(Xโ : AddCommGrpCat)
(aโ : (CategoryTheory.coyoneda.obj X).obj Xโ)
:
@[simp]
theorem
CommGrpCat.coyonedaForget_inv_app_app
(X : CommGrpCatแตแต)
(Xโ : CommGrpCat)
(aโ : (CategoryTheory.coyoneda.obj X).obj Xโ)
:
@[simp]
theorem
AddCommGrpCat.coyonedaForget_hom_app_app_hom
(X : AddCommGrpCatแตแต)
(Xโ : AddCommGrpCat)
(aโ :
((coyoneda.comp
((CategoryTheory.Functor.whiskeringRight AddCommGrpCat AddCommGrpCat (Type u_1)).obj
(CategoryTheory.forget AddCommGrpCat))).obj
X).obj
Xโ)
:
@[simp]
theorem
CommGrpCat.coyonedaForget_hom_app_app_hom
(X : CommGrpCatแตแต)
(Xโ : CommGrpCat)
(aโ :
((coyoneda.comp
((CategoryTheory.Functor.whiskeringRight CommGrpCat CommGrpCat (Type u_1)).obj
(CategoryTheory.forget CommGrpCat))).obj
X).obj
Xโ)
:
The Hom bifunctor sending a type X and a commutative group G to the commutative group
X โ G with pointwise operations.
This is also the coyoneda embedding of Type into CommGrpCat-valued presheaves of commutative
groups.
Equations
Instances For
The Hom bifunctor sending a type X and a commutative group G to the commutative group
X โ G with pointwise operations.
This is also the coyoneda embedding of Type into AddCommGrpCat-valued presheaves of commutative
groups.
Equations
Instances For
@[simp]
@[simp]
theorem
AddCommGrpCat.coyonedaType_obj_map
(X : Type uแตแต)
{Xโ Yโ : AddCommGrpCat}
(f : Xโ โถ Yโ)
:
(coyonedaType.obj X).map f = ofHom
(Pi.addMonoidHom fun (i : Opposite.unop X) =>
(Hom.hom f).comp (Pi.evalAddMonoidHom (fun (a : Opposite.unop X) => โXโ) i))
@[simp]
theorem
CommGrpCat.coyonedaType_obj_map
(X : Type uแตแต)
{Xโ Yโ : CommGrpCat}
(f : Xโ โถ Yโ)
:
(coyonedaType.obj X).map f = ofHom
(Pi.monoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalMonoidHom (fun (a : Opposite.unop X) => โXโ) i))
@[simp]
theorem
AddCommGrpCat.coyonedaType_map_app
{Xโ Yโ : Type uแตแต}
(f : Xโ โถ Yโ)
(G : AddCommGrpCat)
:
(coyonedaType.map f).app G = ofHom
(Pi.addMonoidHom fun (i : Opposite.unop Yโ) => Pi.evalAddMonoidHom (fun (a : Opposite.unop Xโ) => โG) (f.unop i))
@[simp]
@[simp]
theorem
CommGrpCat.coyonedaType_map_app
{Xโ Yโ : Type uแตแต}
(f : Xโ โถ Yโ)
(G : CommGrpCat)
:
(coyonedaType.map f).app G = ofHom (Pi.monoidHom fun (i : Opposite.unop Yโ) => Pi.evalMonoidHom (fun (a : Opposite.unop Xโ) => โG) (f.unop i))