def
ModuleCat.monoidalClosedHomEquiv
{R : Type u}
[CommRing R]
(M N P : ModuleCat R)
:
((CategoryTheory.MonoidalCategory.tensorLeft M).obj N โถ P) โ (N โถ ((CategoryTheory.linearCoyoneda R (ModuleCat R)).obj (Opposite.op M)).obj P)
Auxiliary definition for the MonoidalClosed instance on Module R.
(This is only a separate definition in order to speed up typechecking.)
Equations
Instances For
Equations
theorem
ModuleCat.monoidalClosed_curry
{R : Type u}
[CommRing R]
{M N P : ModuleCat R}
(f : CategoryTheory.MonoidalCategoryStruct.tensorObj M N โถ P)
(x : โM)
(y : โN)
:
(Hom.hom ((Hom.hom (CategoryTheory.MonoidalClosed.curry f)) y)) x = (CategoryTheory.ConcreteCategory.hom f) (x โโ[R] y)
@[simp]
theorem
ModuleCat.monoidalClosed_uncurry
{R : Type u}
[CommRing R]
{M N P : ModuleCat R}
(f : N โถ M โน P)
(x : โM)
(y : โN)
:
theorem
ModuleCat.ihom_ev_app
{R : Type u}
[CommRing R]
(M N : ModuleCat R)
:
(CategoryTheory.ihom.ev M).app N = ofHom
((TensorProduct.uncurry (RingHom.id R) โM โ(M โน N) โN) (LinearMap.lcomp R โN โhomLinearEquiv โโ LinearMap.id.flip))
Describes the counit of the adjunction M โ - โฃ Hom(M, -). Given an R-module N this
should give a map M โ Hom(M, N) โถ N, so we flip the order of the arguments in the identity map
Hom(M, N) โถ (M โถ N) and uncurry the resulting map M โถ Hom(M, N) โถ N.
theorem
ModuleCat.ihom_coev_app
{R : Type u}
[CommRing R]
(M N : ModuleCat R)
:
(CategoryTheory.ihom.coev M).app N = ofHomโ (TensorProduct.mk R โ(Opposite.unop (Opposite.op M)) โ((CategoryTheory.Functor.id (ModuleCat R)).obj N)).flip
Describes the unit of the adjunction M โ - โฃ Hom(M, -). Given an R-module N this should
define a map N โถ Hom(M, M โ N), which is given by flipping the arguments in the natural
R-bilinear map M โถ N โถ M โ N.
theorem
ModuleCat.monoidalClosed_pre_app
{R : Type u}
[CommRing R]
{M N : ModuleCat R}
(P : ModuleCat R)
(f : N โถ M)
:
(CategoryTheory.MonoidalClosed.pre f).app P = ofHom (โhomLinearEquiv.symm โโ LinearMap.lcomp R (โP) (Hom.hom f) โโ โhomLinearEquiv)