Documentation

Mathlib.Algebra.Category.ModuleCat.Monoidal.Closed

The monoidal closed structure on Module R. #

Auxiliary definition for the MonoidalClosed instance on Module R. (This is only a separate definition in order to speed up typechecking.)

Equations
    Instances For
      theorem ModuleCat.ihom_ev_app {R : Type u} [CommRing R] (M N : ModuleCat R) :
      (CategoryTheory.ihom.ev M).app N = ofHom ((TensorProduct.uncurry (RingHom.id R) โ†‘M โ†‘(M โŸน N) โ†‘N) (LinearMap.lcomp R โ†‘N โ†‘homLinearEquiv โˆ˜โ‚— LinearMap.id.flip))

      Describes the counit of the adjunction M โŠ— - โŠฃ Hom(M, -). Given an R-module N this should give a map M โŠ— Hom(M, N) โŸถ N, so we flip the order of the arguments in the identity map Hom(M, N) โŸถ (M โŸถ N) and uncurry the resulting map M โŸถ Hom(M, N) โŸถ N.

      Describes the unit of the adjunction M โŠ— - โŠฃ Hom(M, -). Given an R-module N this should define a map N โŸถ Hom(M, M โŠ— N), which is given by flipping the arguments in the natural R-bilinear map M โŸถ N โŸถ M โŠ— N.