Ulift functor for ModuleCat #
In this file, we define the obvious functor ModuleCat.{v} R ⥤ ModuleCat.{max v v'} R and prove
it is exact, fully faithful and preverves projective and injective objects.
def
ModuleCat.uliftFunctor
(R : Type u)
[Ring R]
:
CategoryTheory.Functor (ModuleCat R) (ModuleCat R)
Universe lift functor for R-module.
Equations
Instances For
@[simp]
@[simp]
theorem
ModuleCat.uliftFunctor_map
(R : Type u)
[Ring R]
{X✝ Y✝ : ModuleCat R}
(f : X✝ ⟶ Y✝)
:
(uliftFunctor.{v', v, u} R).map f = ofHom (↑ULift.moduleEquiv.symm ∘ₗ Hom.hom f ∘ₗ ↑ULift.moduleEquiv)
The universe lift functor for R-module is fully faithful.
Equations
Instances For
The ULift functor on ModuleCat is compatible with the one defined on categories of types.
Equations
Instances For
@[simp]
theorem
ModuleCat.uliftFunctorForgetIso_inv_app
(R : Type u)
[Ring R]
(X : ModuleCat R)
(a✝ : ((uliftFunctor.{v', u_1, u} R).comp (CategoryTheory.forget (ModuleCat R))).obj X)
:
@[simp]
theorem
ModuleCat.uliftFunctorForgetIso_hom_app
(R : Type u)
[Ring R]
(X : ModuleCat R)
(a✝ : ((uliftFunctor.{v', u_1, u} R).comp (CategoryTheory.forget (ModuleCat R))).obj X)
:
theorem
ModuleCat.uliftFunctor_map_exact
(R : Type u)
[Ring R]
(S : CategoryTheory.ShortComplex (ModuleCat R))
(h : S.Exact)
:
(S.map (uliftFunctor.{u_1, v, u} R)).Exact
instance
ModuleCat.instPreservesProjectiveObjectsUliftFunctorOfSmall
(R : Type u)
[Ring R]
[Small.{v, u} R]
:
instance
ModuleCat.instPreservesInjectiveObjectsUliftFunctorOfSmall
(R : Type u)
[Ring R]
[Small.{v, u} R]
: