Documentation

Mathlib.Algebra.Category.MonCat.Yoneda

Yoneda embeddings #

This file defines a few Yoneda embeddings for the category of commutative monoids.

@[simp]
theorem CommMonCat.coyoneda_map_app {Xโœ Yโœ : CommMonCatแต’แต–} (f : Xโœ โŸถ Yโœ) (N : CommMonCat) :
@[simp]
theorem CommMonCat.coyoneda_obj_map (M : CommMonCatแต’แต–) {Xโœ Yโœ : CommMonCat} (f : Xโœ โŸถ Yโœ) :

The CommMonCat-valued coyoneda embedding composed with the forgetful functor is the usual coyoneda embedding.

Equations
    Instances For

      The AddCommMonCat-valued coyoneda embedding composed with the forgetful functor is the usual coyoneda embedding.

      Equations
        Instances For
          @[simp]
          theorem CommMonCat.coyonedaForget_inv_app_app (X : CommMonCatแต’แต–) (Xโœ : CommMonCat) (aโœ : (CategoryTheory.coyoneda.obj X).obj Xโœ) :
          (coyonedaForget.inv.app X).app Xโœ aโœ = Hom.hom aโœ

          The Hom bifunctor sending a type X and a commutative monoid M to the commutative monoid X โ†’ M with pointwise operations.

          This is also the coyoneda embedding of Type into CommMonCat-valued presheaves of commutative monoids.

          Equations
            Instances For

              The Hom bifunctor sending a type X and a commutative monoid M to the commutative monoid X โ†’ M with pointwise operations.

              This is also the coyoneda embedding of Type into AddCommMonCat-valued presheaves of commutative monoids.

              Equations
                Instances For
                  @[simp]
                  theorem CommMonCat.coyonedaType_map_app {Xโœ Yโœ : Type uแต’แต–} (f : Xโœ โŸถ Yโœ) (N : CommMonCat) :
                  (coyonedaType.map f).app N = ofHom (Pi.monoidHom fun (i : Opposite.unop Yโœ) => Pi.evalMonoidHom (fun (a : Opposite.unop Xโœ) => โ†‘N) (f.unop i))
                  @[simp]
                  theorem CommMonCat.coyonedaType_obj_map (X : Type uแต’แต–) {Xโœ Yโœ : CommMonCat} (f : Xโœ โŸถ Yโœ) :
                  (coyonedaType.obj X).map f = ofHom (Pi.monoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalMonoidHom (fun (a : Opposite.unop X) => โ†‘Xโœ) i))
                  @[simp]
                  theorem AddCommMonCat.coyonedaType_map_app {Xโœ Yโœ : Type uแต’แต–} (f : Xโœ โŸถ Yโœ) (N : AddCommMonCat) :
                  (coyonedaType.map f).app N = ofHom (Pi.addMonoidHom fun (i : Opposite.unop Yโœ) => Pi.evalAddMonoidHom (fun (a : Opposite.unop Xโœ) => โ†‘N) (f.unop i))
                  @[simp]
                  theorem AddCommMonCat.coyonedaType_obj_map (X : Type uแต’แต–) {Xโœ Yโœ : AddCommMonCat} (f : Xโœ โŸถ Yโœ) :
                  (coyonedaType.obj X).map f = ofHom (Pi.addMonoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalAddMonoidHom (fun (a : Opposite.unop X) => โ†‘Xโœ) i))