Under CommRingCat #
In this file we provide basic API for Under R when R : CommRingCat. Under R is
(equivalent to) the category of commutative R-algebras. For not necessarily commutative
algebras, use AlgCat R instead.
instance
CommRingCat.instCoeSortUnderType
{R : CommRingCat}
:
CoeSort (CategoryTheory.Under R) (Type u)
Equations
instance
CommRingCat.instAlgebraCarrierRightDiscretePUnit
{R : CommRingCat}
(A : CategoryTheory.Under R)
:
Equations
Turn a morphism in Under R into an algebra homomorphism.
Equations
Instances For
@[simp]
@[simp]
theorem
CommRingCat.toAlgHom_comp
{R : CommRingCat}
{A B C : CategoryTheory.Under R}
(f : A βΆ B)
(g : B βΆ C)
:
@[simp]
theorem
CommRingCat.toAlgHom_apply
{R : CommRingCat}
{A B : CategoryTheory.Under R}
(f : A βΆ B)
(a : βA.right)
:
Make an object of Under R from an R-algebra.
Equations
Instances For
@[simp]
theorem
CommRingCat.mkUnder_ext
{R : CommRingCat}
{A : Type u}
[CommRing A]
[Algebra (βR) A]
{B : CategoryTheory.Under R}
{f g : R.mkUnder A βΆ B}
(h : β (a : A), (CategoryTheory.ConcreteCategory.hom f.right) a = (CategoryTheory.ConcreteCategory.hom g.right) a)
:
theorem
CommRingCat.mkUnder_ext_iff
{R : CommRingCat}
{A : Type u}
[CommRing A]
[Algebra (βR) A]
{B : CategoryTheory.Under R}
{f g : R.mkUnder A βΆ B}
:
f = g β β (a : A), (CategoryTheory.ConcreteCategory.hom f.right) a = (CategoryTheory.ConcreteCategory.hom g.right) a
def
AlgHom.toUnder
{R : CommRingCat}
{A B : Type u}
[CommRing A]
[CommRing B]
[Algebra (βR) A]
[Algebra (βR) B]
(f : A ββ[βR] B)
:
Make a morphism in Under R from an algebra map.
Equations
Instances For
@[simp]
theorem
AlgHom.toUnder_right
{R : CommRingCat}
{A B : Type u}
[CommRing A]
[CommRing B]
[Algebra (βR) A]
[Algebra (βR) B]
(f : A ββ[βR] B)
(a : A)
:
@[simp]
def
AlgEquiv.toUnder
{R : CommRingCat}
{A B : Type u}
[CommRing A]
[CommRing B]
[Algebra (βR) A]
[Algebra (βR) B]
(f : A ββ[βR] B)
:
Make an isomorphism in Under R from an algebra isomorphism.
Equations
Instances For
@[simp]
theorem
AlgEquiv.toUnder_hom_right_apply
{R : CommRingCat}
{A B : Type u}
[CommRing A]
[CommRing B]
[Algebra (βR) A]
[Algebra (βR) B]
(f : A ββ[βR] B)
(a : A)
:
@[simp]
theorem
AlgEquiv.toUnder_inv_right_apply
{R : CommRingCat}
{A B : Type u}
[CommRing A]
[CommRing B]
[Algebra (βR) A]
[Algebra (βR) B]
(f : A ββ[βR] B)
(b : B)
:
The base change functor A β¦ S β[R] A.
Equations
Instances For
@[simp]
theorem
CommRingCat.tensorProd_map_right
(R S : CommRingCat)
[Algebra βR βS]
{Xβ Yβ : CategoryTheory.Under R}
(f : Xβ βΆ Yβ)
:
((R.tensorProd S).map f).right = ofHom β(Algebra.TensorProduct.map (AlgHom.id βS βS) (toAlgHom f))
def
CommRingCat.tensorProdObjIsoPushoutObj
{R : CommRingCat}
(S : CommRingCat)
[Algebra βR βS]
(A : CategoryTheory.Under R)
:
S.mkUnder (TensorProduct βR βS βA.right) β
(CategoryTheory.Under.pushout (ofHom (algebraMap βR βS))).obj A
The natural isomorphism S β[R] A β
pushout A.hom (algebraMap R S) in Under S.
Equations
Instances For
@[simp]
theorem
CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right
{R S : CommRingCat}
[Algebra βR βS]
(A : CategoryTheory.Under R)
:
@[simp]
theorem
CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc
{R S : CommRingCat}
[Algebra βR βS]
(A : CategoryTheory.Under R)
{Z : CommRingCat}
(h : (S.mkUnder (TensorProduct βR βS βA.right)).right βΆ Z)
:
@[simp]
theorem
CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
{R S : CommRingCat}
[Algebra βR βS]
(A : CategoryTheory.Under R)
:
@[simp]
theorem
CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc
{R S : CommRingCat}
[Algebra βR βS]
(A : CategoryTheory.Under R)
{Z : CommRingCat}
(h : (S.mkUnder (TensorProduct βR βS βA.right)).right βΆ Z)
:
A β¦ S β[R] A is naturally isomorphic to A β¦ pushout A.hom (algebraMap R S).
Equations
Instances For
@[simp]
theorem
CommRingCat.tensorProdIsoPushout_app
{R S : CommRingCat}
[Algebra βR βS]
(A : CategoryTheory.Under R)
: