Module.End R M is a central algebra #
This file shows that the algebra of endomorphisms on a free module is central.
theorem
Module.End.mem_subsemiringCenter_iff
{R : Type u_1}
{M : Type u_3}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Free R M]
{f : End R M}
:
theorem
Module.End.mem_subalgebraCenter_iff
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Free R M]
[CommSemiring S]
[Module S M]
[SMulCommClass R S M]
[Algebra S R]
[IsScalarTower S R M]
{f : End R M}
:
instance
Algebra.IsCentral.instEnd
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Module.Free R M]
[CommSemiring S]
[Module S M]
[SMulCommClass R S M]
[Algebra S R]
[IsScalarTower S R M]
[IsCentral S R]
:
IsCentral S (Module.End R M)
The center of endomorphisms on a free module is trivial, in other words, it is a central algebra.
theorem
LinearEquiv.conjAlgEquiv_ext_iff
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Module.Free R M]
[CommSemiring S]
[Module S M]
[SMulCommClass R S M]
[Algebra S R]
[IsScalarTower S R M]
{M₂ : Type u_4}
[AddCommMonoid M₂]
[Module R M₂]
[Module S M₂]
[SMulCommClass R S M₂]
[IsScalarTower S R M₂]
[Algebra.IsCentral S R]
{f g : M ≃ₗ[R] M₂}
:
theorem
LinearEquiv.conjAlgEquiv_ext_iff'
{R : Type u_1}
{M : Type u_3}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Module.Free R M]
{S : Type u_4}
{M₂ : Type u_5}
[CommRing S]
[IsCancelMulZero S]
[Module S M]
[SMulCommClass R S M]
[Algebra S R]
[IsScalarTower S R M]
[AddCommGroup M₂]
[Module R M₂]
[Module S M₂]
[SMulCommClass R S M₂]
[IsScalarTower S R M₂]
[Algebra.IsCentral S R]
[Module.IsTorsionFree S M₂]
(f g : M ≃ₗ[R] M₂)
: