Documentation

Mathlib.Algebra.Divisibility.Prod

Lemmas about the divisibility relation in product (semi)groups #

theorem prod_dvd_iff {G₁ : Type u_2} {Gā‚‚ : Type u_3} [Semigroup G₁] [Semigroup Gā‚‚] {x y : G₁ Ɨ Gā‚‚} :
x ∣ y ↔ x.1 ∣ y.1 ∧ x.2 ∣ y.2
@[simp]
theorem Prod.mk_dvd_mk {G₁ : Type u_2} {Gā‚‚ : Type u_3} [Semigroup G₁] [Semigroup Gā‚‚] {x₁ y₁ : G₁} {xā‚‚ yā‚‚ : Gā‚‚} :
(x₁, xā‚‚) ∣ (y₁, yā‚‚) ↔ x₁ ∣ y₁ ∧ xā‚‚ ∣ yā‚‚
instance instDecompositionMonoidProd {G₁ : Type u_2} {Gā‚‚ : Type u_3} [Semigroup G₁] [Semigroup Gā‚‚] [DecompositionMonoid G₁] [DecompositionMonoid Gā‚‚] :
DecompositionMonoid (G₁ Ɨ Gā‚‚)
theorem pi_dvd_iff {ι : Type u_1} {G : ι → Type u_4} [(i : ι) → Semigroup (G i)] {x y : (i : ι) → G i} :
x ∣ y ↔ āˆ€ (i : ι), x i ∣ y i
instance instDecompositionMonoidForall {ι : Type u_1} {G : ι → Type u_4} [(i : ι) → Semigroup (G i)] [āˆ€ (i : ι), DecompositionMonoid (G i)] :
DecompositionMonoid ((i : ι) → G i)