Lemmas about commuting pairs of elements involving units. #
theorem
AddCommute.addUnits_neg_right
{M : Type u_1}
[AddMonoid M]
{a : M}
{u : AddUnits M}
:
AddCommute a โu โ AddCommute a โ(-u)
@[simp]
@[simp]
theorem
AddCommute.addUnits_neg_left
{M : Type u_1}
[AddMonoid M]
{a : M}
{u : AddUnits M}
:
AddCommute (โu) a โ AddCommute (โ(-u)) a
@[simp]
@[simp]
theorem
AddCommute.addUnits_val
{M : Type u_1}
[AddMonoid M]
{uโ uโ : AddUnits M}
:
AddCommute uโ uโ โ AddCommute โuโ โuโ
theorem
AddCommute.addUnits_of_val
{M : Type u_1}
[AddMonoid M]
{uโ uโ : AddUnits M}
:
AddCommute โuโ โuโ โ AddCommute uโ uโ
@[simp]
@[simp]
def
AddUnits.leftOfAdd
{M : Type u_1}
[AddMonoid M]
(u : AddUnits M)
(a b : M)
(hu : a + b = โu)
(hc : AddCommute a b)
:
AddUnits M
If the sum of two commuting elements is an additive unit, then the left summand is an additive unit.
Equations
Instances For
def
AddUnits.rightOfAdd
{M : Type u_1}
[AddMonoid M]
(u : AddUnits M)
(a b : M)
(hu : a + b = โu)
(hc : AddCommute a b)
:
AddUnits M
If the sum of two commuting elements is an additive unit, then the right summand is an additive unit.
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
AddCommute.addUnits_zsmul_right
{M : Type u_1}
[AddMonoid M]
{a : M}
{u : AddUnits M}
(h : AddCommute a โu)
(m : โค)
:
AddCommute a โ(m โข u)
@[simp]
@[simp]
theorem
AddCommute.addUnits_zsmul_left
{M : Type u_1}
[AddMonoid M]
{a : M}
{u : AddUnits M}
(h : AddCommute (โu) a)
(m : โค)
:
AddCommute (โ(m โข u)) a
@[simp]
@[simp]
theorem
AddUnits.addCommute_iff_neg_add_cancel
{M : Type u_1}
[AddMonoid M]
{u : AddUnits M}
{a : M}
:
theorem
AddUnits.addCommute_iff_neg_add_cancel_assoc
{M : Type u_1}
[AddMonoid M]
{u : AddUnits M}
{a : M}
:
theorem
AddUnits.addCommute_iff_add_neg_cancel
{M : Type u_1}
[AddMonoid M]
{u : AddUnits M}
{a : M}
:
theorem
AddUnits.addCommute_iff_add_neg_cancel_assoc
{M : Type u_1}
[AddMonoid M]
{u : AddUnits M}
{a : M}
:
theorem
AddCommute.sub_eq_sub_iff_of_isAddUnit
{M : Type u_1}
[SubtractionMonoid M]
{a b c d : M}
(hbd : AddCommute b d)
(hb : IsAddUnit b)
(hd : IsAddUnit d)
:
theorem
AddCommute.add_neg_eq_add_neg_iff_of_isAddUnit
{M : Type u_1}
[SubtractionMonoid M]
{a b c d : M}
(hbd : AddCommute b d)
(hb : IsAddUnit b)
(hd : IsAddUnit d)
:
theorem
AddCommute.neg_add_eq_neg_add_iff_of_isAddUnit
{M : Type u_1}
[SubtractionMonoid M]
{a b c d : M}
(hbd : AddCommute b d)
(hb : IsAddUnit b)
(hd : IsAddUnit d)
: