Group structures on the multiplicative and additive opposites #
Additive structures on αᵐᵒᵖ #
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Multiplicative structures on αᵐᵒᵖ #
We also generate additive structures on αᵃᵒᵖ using to_additive
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
SemiconjBy.op
{α : Type u_1}
[Mul α]
{a x y : α}
(h : SemiconjBy a x y)
:
SemiconjBy (MulOpposite.op a) (MulOpposite.op y) (MulOpposite.op x)
theorem
AddSemiconjBy.op
{α : Type u_1}
[Add α]
{a x y : α}
(h : AddSemiconjBy a x y)
:
AddSemiconjBy (AddOpposite.op a) (AddOpposite.op y) (AddOpposite.op x)
theorem
SemiconjBy.unop
{α : Type u_1}
[Mul α]
{a x y : αᵐᵒᵖ}
(h : SemiconjBy a x y)
:
SemiconjBy (MulOpposite.unop a) (MulOpposite.unop y) (MulOpposite.unop x)
theorem
Commute.op
{α : Type u_1}
[Mul α]
{x y : α}
(h : Commute x y)
:
Commute (MulOpposite.op x) (MulOpposite.op y)
theorem
AddCommute.op
{α : Type u_1}
[Add α]
{x y : α}
(h : AddCommute x y)
:
AddCommute (AddOpposite.op x) (AddOpposite.op y)
theorem
Commute.unop
{α : Type u_1}
[Mul α]
{x y : αᵐᵒᵖ}
(h : Commute x y)
:
Commute (MulOpposite.unop x) (MulOpposite.unop y)
@[simp]
@[simp]
@[simp]
instance
MulOpposite.instIsDedekindFiniteMonoid
{α : Type u_1}
[MulOne α]
[IsDedekindFiniteMonoid α]
:
instance
AddOpposite.instIsDedekindFiniteAddMonoid
{α : Type u_1}
[AddZero α]
[IsDedekindFiniteAddMonoid α]
: