Lemmas about semiconjugate elements of a group #
@[simp]
@[simp]
theorem
SemiconjBy.inv_inv_symm
{G : Type u_1}
[DivisionMonoid G]
{a x y : G}
:
SemiconjBy a y x โ SemiconjBy aโปยน xโปยน yโปยน
Alias of the reverse direction of SemiconjBy.inv_inv_symm_iff.
theorem
AddSemiconjBy.neg_neg_symm
{G : Type u_1}
[SubtractionMonoid G]
{a x y : G}
:
AddSemiconjBy a y x โ AddSemiconjBy (-a) (-x) (-y)
@[simp]
@[simp]
theorem
SemiconjBy.inv_symm_left
{G : Type u_1}
[Group G]
{a x y : G}
:
SemiconjBy a x y โ SemiconjBy aโปยน y x
Alias of the reverse direction of SemiconjBy.inv_symm_left_iff.
theorem
AddSemiconjBy.neg_symm_left
{G : Type u_1}
[AddGroup G]
{a x y : G}
:
AddSemiconjBy a x y โ AddSemiconjBy (-a) y x
@[simp]
@[simp]
theorem
SemiconjBy.inv_right
{G : Type u_1}
[Group G]
{a x y : G}
:
SemiconjBy a x y โ SemiconjBy a xโปยน yโปยน
Alias of the reverse direction of SemiconjBy.inv_right_iff.
theorem
AddSemiconjBy.neg_right
{G : Type u_1}
[AddGroup G]
{a x y : G}
:
AddSemiconjBy a x y โ AddSemiconjBy a (-x) (-y)
@[simp]
theorem
SemiconjBy.zpow_right
{G : Type u_1}
[Group G]
{a x y : G}
(h : SemiconjBy a x y)
(m : โค)
:
SemiconjBy a (x ^ m) (y ^ m)
@[simp]
theorem
AddSemiconjBy.zsmul_right
{G : Type u_1}
[AddGroup G]
{a x y : G}
(h : AddSemiconjBy a x y)
(m : โค)
:
AddSemiconjBy a (m โข x) (m โข y)
theorem
AddSemiconjBy.eq_zero_iff
{G : Type u_1}
[AddGroup G]
(a : G)
{x y : G}
(h : AddSemiconjBy a x y)
: