Documentation

Mathlib.Algebra.Group.Subgroup.MulOpposite

Mul-opposite subgroups #

Tags #

subgroup, subgroups

Pull a subgroup back to an opposite subgroup along MulOpposite.unop

Equations
    Instances For

      Pull an additive subgroup back to an opposite additive subgroup along AddOpposite.unop

      Equations
        Instances For
          @[simp]
          theorem Subgroup.coe_op {G : Type u_2} [Group G] (H : Subgroup G) :
          @[simp]
          theorem AddSubgroup.coe_op {G : Type u_2} [AddGroup G] (H : AddSubgroup G) :

          Pull an opposite subgroup back to a subgroup along MulOpposite.op

          Equations
            Instances For

              Pull an opposite additive subgroup back to an additive subgroup along AddOpposite.op

              Equations
                Instances For
                  @[simp]
                  theorem Subgroup.unop_op {G : Type u_2} [Group G] (S : Subgroup G) :
                  S.op.unop = S
                  @[simp]
                  theorem AddSubgroup.unop_op {G : Type u_2} [AddGroup G] (S : AddSubgroup G) :
                  S.op.unop = S

                  Lattice results #

                  theorem Subgroup.op_le_iff {G : Type u_2} [Group G] {Sโ‚ : Subgroup G} {Sโ‚‚ : Subgroup Gแตแต’แต–} :
                  Sโ‚.op โ‰ค Sโ‚‚ โ†” Sโ‚ โ‰ค Sโ‚‚.unop
                  theorem AddSubgroup.op_le_iff {G : Type u_2} [AddGroup G] {Sโ‚ : AddSubgroup G} {Sโ‚‚ : AddSubgroup Gแตƒแต’แต–} :
                  Sโ‚.op โ‰ค Sโ‚‚ โ†” Sโ‚ โ‰ค Sโ‚‚.unop
                  theorem Subgroup.le_op_iff {G : Type u_2} [Group G] {Sโ‚ : Subgroup Gแตแต’แต–} {Sโ‚‚ : Subgroup G} :
                  Sโ‚ โ‰ค Sโ‚‚.op โ†” Sโ‚.unop โ‰ค Sโ‚‚
                  theorem AddSubgroup.le_op_iff {G : Type u_2} [AddGroup G] {Sโ‚ : AddSubgroup Gแตƒแต’แต–} {Sโ‚‚ : AddSubgroup G} :
                  Sโ‚ โ‰ค Sโ‚‚.op โ†” Sโ‚.unop โ‰ค Sโ‚‚
                  @[simp]
                  theorem Subgroup.op_le_op_iff {G : Type u_2} [Group G] {Sโ‚ Sโ‚‚ : Subgroup G} :
                  Sโ‚.op โ‰ค Sโ‚‚.op โ†” Sโ‚ โ‰ค Sโ‚‚
                  @[simp]
                  theorem AddSubgroup.op_le_op_iff {G : Type u_2} [AddGroup G] {Sโ‚ Sโ‚‚ : AddSubgroup G} :
                  Sโ‚.op โ‰ค Sโ‚‚.op โ†” Sโ‚ โ‰ค Sโ‚‚
                  @[simp]
                  theorem Subgroup.unop_le_unop_iff {G : Type u_2} [Group G] {Sโ‚ Sโ‚‚ : Subgroup Gแตแต’แต–} :
                  Sโ‚.unop โ‰ค Sโ‚‚.unop โ†” Sโ‚ โ‰ค Sโ‚‚
                  @[simp]
                  theorem AddSubgroup.unop_le_unop_iff {G : Type u_2} [AddGroup G] {Sโ‚ Sโ‚‚ : AddSubgroup Gแตƒแต’แต–} :
                  Sโ‚.unop โ‰ค Sโ‚‚.unop โ†” Sโ‚ โ‰ค Sโ‚‚

                  A subgroup H of G determines a subgroup H.op of the opposite group Gแตแต’แต–.

                  Equations
                    Instances For

                      An additive subgroup H of G determines an additive subgroup H.op of the opposite additive group Gแตƒแต’แต–.

                      Equations
                        Instances For
                          @[simp]
                          theorem Subgroup.opEquiv_apply {G : Type u_2} [Group G] (H : Subgroup G) :
                          @[simp]
                          theorem Subgroup.op_inj {G : Type u_2} [Group G] {S T : Subgroup G} :
                          S.op = T.op โ†” S = T
                          @[simp]
                          theorem AddSubgroup.op_inj {G : Type u_2} [AddGroup G] {S T : AddSubgroup G} :
                          S.op = T.op โ†” S = T
                          def Subgroup.equivOp {G : Type u_2} [Group G] (H : Subgroup G) :
                          โ†ฅH โ‰ƒ โ†ฅH.op

                          Bijection between a subgroup H and its opposite.

                          Equations
                            Instances For
                              def AddSubgroup.equivOp {G : Type u_2} [AddGroup G] (H : AddSubgroup G) :
                              โ†ฅH โ‰ƒ โ†ฅH.op

                              Bijection between an additive subgroup H and its opposite.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem AddSubgroup.equivOp_symm_apply_coe {G : Type u_2} [AddGroup G] (H : AddSubgroup G) (b : โ†ฅH.op) :
                                  โ†‘(H.equivOp.symm b) = AddOpposite.unop โ†‘b
                                  @[simp]
                                  theorem Subgroup.equivOp_symm_apply_coe {G : Type u_2} [Group G] (H : Subgroup G) (b : โ†ฅH.op) :
                                  โ†‘(H.equivOp.symm b) = MulOpposite.unop โ†‘b
                                  @[simp]
                                  theorem Subgroup.equivOp_apply_coe {G : Type u_2} [Group G] (H : Subgroup G) (a : โ†ฅH) :
                                  โ†‘(H.equivOp a) = MulOpposite.op โ†‘a
                                  @[simp]
                                  theorem AddSubgroup.equivOp_apply_coe {G : Type u_2} [AddGroup G] (H : AddSubgroup G) (a : โ†ฅH) :
                                  โ†‘(H.equivOp a) = AddOpposite.op โ†‘a