Documentation

Mathlib.Algebra.Group.Subgroup.ZPowers.Basic

Subgroups generated by an element #

Tags #

subgroup, subgroups

def Subgroup.zpowers {G : Type u_1} [Group G] (g : G) :

The subgroup generated by an element.

Equations
    Instances For
      def AddSubgroup.zmultiples {G : Type u_1} [AddGroup G] (g : G) :

      The additive subgroup generated by an element.

      Equations
        Instances For
          @[simp]
          theorem Subgroup.mem_zpowers {G : Type u_1} [Group G] (g : G) :
          theorem Subgroup.coe_zpowers {G : Type u_1} [Group G] (g : G) :
          โ†‘(zpowers g) = Set.range fun (x : โ„ค) => g ^ x
          theorem AddSubgroup.coe_zmultiples {G : Type u_1} [AddGroup G] (g : G) :
          โ†‘(zmultiples g) = Set.range fun (x : โ„ค) => x โ€ข g
          noncomputable instance Subgroup.decidableMemZPowers {G : Type u_1} [Group G] {a : G} :
          DecidablePred fun (x : G) => x โˆˆ zpowers a
          Equations
            noncomputable instance AddSubgroup.decidableMemZMultiples {G : Type u_1} [AddGroup G] {a : G} :
            DecidablePred fun (x : G) => x โˆˆ zmultiples a
            Equations
              theorem Subgroup.mem_zpowers_iff {G : Type u_1} [Group G] {g h : G} :
              h โˆˆ zpowers g โ†” โˆƒ (k : โ„ค), g ^ k = h
              @[simp]
              theorem Subgroup.zpow_mem_zpowers {G : Type u_1} [Group G] (g : G) (k : โ„ค) :
              @[simp]
              theorem Subgroup.npow_mem_zpowers {G : Type u_1} [Group G] (g : G) (k : โ„•) :
              @[simp]
              theorem Subgroup.forall_zpowers {G : Type u_1} [Group G] {x : G} {p : โ†ฅ(zpowers x) โ†’ Prop} :
              (โˆ€ (g : โ†ฅ(zpowers x)), p g) โ†” โˆ€ (m : โ„ค), p โŸจx ^ m, โ‹ฏโŸฉ
              @[simp]
              theorem AddSubgroup.forall_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : โ†ฅ(zmultiples x) โ†’ Prop} :
              (โˆ€ (g : โ†ฅ(zmultiples x)), p g) โ†” โˆ€ (m : โ„ค), p โŸจm โ€ข x, โ‹ฏโŸฉ
              @[simp]
              theorem Subgroup.exists_zpowers {G : Type u_1} [Group G] {x : G} {p : โ†ฅ(zpowers x) โ†’ Prop} :
              (โˆƒ (g : โ†ฅ(zpowers x)), p g) โ†” โˆƒ (m : โ„ค), p โŸจx ^ m, โ‹ฏโŸฉ
              @[simp]
              theorem AddSubgroup.exists_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : โ†ฅ(zmultiples x) โ†’ Prop} :
              (โˆƒ (g : โ†ฅ(zmultiples x)), p g) โ†” โˆƒ (m : โ„ค), p โŸจm โ€ข x, โ‹ฏโŸฉ
              theorem Subgroup.forall_mem_zpowers {G : Type u_1} [Group G] {x : G} {p : G โ†’ Prop} :
              (โˆ€ g โˆˆ zpowers x, p g) โ†” โˆ€ (m : โ„ค), p (x ^ m)
              theorem AddSubgroup.forall_mem_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : G โ†’ Prop} :
              (โˆ€ g โˆˆ zmultiples x, p g) โ†” โˆ€ (m : โ„ค), p (m โ€ข x)
              theorem Subgroup.exists_mem_zpowers {G : Type u_1} [Group G] {x : G} {p : G โ†’ Prop} :
              (โˆƒ g โˆˆ zpowers x, p g) โ†” โˆƒ (m : โ„ค), p (x ^ m)
              theorem AddSubgroup.exists_mem_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : G โ†’ Prop} :
              (โˆƒ g โˆˆ zmultiples x, p g) โ†” โˆƒ (m : โ„ค), p (m โ€ข x)
              @[simp]
              theorem MonoidHom.map_zpowers {G : Type u_1} [Group G] {N : Type u_3} [Group N] (f : G โ†’* N) (x : G) :
              @[simp]
              theorem Subgroup.zpowers_le {G : Type u_1} [Group G] {g : G} {H : Subgroup G} :
              theorem Subgroup.zpowers_le_of_mem {G : Type u_1} [Group G] {g : G} {H : Subgroup G} :
              g โˆˆ H โ†’ zpowers g โ‰ค H

              Alias of the reverse direction of Subgroup.zpowers_le.

              theorem AddSubgroup.zmultiples_le_of_mem {G : Type u_1} [AddGroup G] {g : G} {H : AddSubgroup G} :
              g โˆˆ H โ†’ zmultiples g โ‰ค H

              Alias of the reverse direction of AddSubgroup.zmultiples_le.

              @[simp]
              theorem Subgroup.zpowers_eq_bot {G : Type u_1} [Group G] {g : G} :