The subgroup generated by an element.
Equations
Instances For
The additive subgroup generated by an element.
Equations
Instances For
@[simp]
@[simp]
noncomputable instance
Subgroup.decidableMemZPowers
{G : Type u_1}
[Group G]
{a : G}
:
DecidablePred fun (x : G) => x โ zpowers a
Equations
noncomputable instance
AddSubgroup.decidableMemZMultiples
{G : Type u_1}
[AddGroup G]
{a : G}
:
DecidablePred fun (x : G) => x โ zmultiples a
Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
AddSubgroup.forall_zmultiples
{G : Type u_1}
[AddGroup G]
{x : G}
{p : โฅ(zmultiples x) โ Prop}
:
@[simp]
theorem
AddSubgroup.exists_zmultiples
{G : Type u_1}
[AddGroup G]
{x : G}
{p : โฅ(zmultiples x) โ Prop}
:
theorem
ofAdd_image_zmultiples_eq_zpowers_ofAdd
{A : Type u_2}
[AddGroup A]
{x : A}
:
โMultiplicative.ofAdd '' โ(AddSubgroup.zmultiples x) = โ(Subgroup.zpowers (Multiplicative.ofAdd x))
instance
Subgroup.zpowers_isMulCommutative
{G : Type u_1}
[Group G]
(g : G)
:
IsMulCommutative โฅ(zpowers g)
instance
AddSubgroup.zmultiples_isAddCommutative
{G : Type u_1}
[AddGroup G]
(g : G)
:
IsAddCommutative โฅ(zmultiples g)
@[simp]
@[simp]
Alias of the reverse direction of Subgroup.zpowers_le.
theorem
AddSubgroup.zmultiples_le_of_mem
{G : Type u_1}
[AddGroup G]
{g : G}
{H : AddSubgroup G}
:
g โ H โ zmultiples g โค H
Alias of the reverse direction of AddSubgroup.zmultiples_le.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]