Documentation

Mathlib.Algebra.GroupWithZero.Action.Hom

Zero-related โ€ข instances on group-like morphisms #

instance ZeroHom.instSMulZeroClass {M : Type u_1} {A : Type u_3} {B : Type u_4} [Zero A] [Zero B] [SMulZeroClass M B] :
Equations
    theorem ZeroHom.coe_smul {M : Type u_1} {A : Type u_3} {B : Type u_4} [Zero A] [Zero B] [SMulZeroClass M B] (m : M) (f : ZeroHom A B) :
    โ‡‘(m โ€ข f) = m โ€ข โ‡‘f
    @[simp]
    theorem ZeroHom.smul_apply {M : Type u_1} {A : Type u_3} {B : Type u_4} [Zero A] [Zero B] [SMulZeroClass M B] (m : M) (f : ZeroHom A B) (a : A) :
    (m โ€ข f) a = m โ€ข f a
    theorem ZeroHom.smul_comp {M : Type u_1} {A : Type u_3} {B : Type u_4} {C : Type u_5} [Zero A] [Zero B] [Zero C] [SMulZeroClass M C] (m : M) (g : ZeroHom B C) (f : ZeroHom A B) :
    (m โ€ข g).comp f = m โ€ข g.comp f
    instance ZeroHom.instSMulCommClass {M : Type u_1} {N : Type u_2} {A : Type u_3} {B : Type u_4} [Zero A] [Zero B] [SMulZeroClass M B] [SMulZeroClass N B] [SMulCommClass M N B] :
    instance ZeroHom.instIsScalarTower {M : Type u_1} {N : Type u_2} {A : Type u_3} {B : Type u_4} [Zero A] [Zero B] [SMul M N] [SMulZeroClass M B] [SMulZeroClass N B] [IsScalarTower M N B] :
    instance ZeroHom.instSMulWithZero {M : Type u_1} {A : Type u_3} {B : Type u_4} [Zero A] [Zero B] [Zero M] [SMulWithZero M B] :
    Equations
      instance ZeroHom.instMulActionWithZero {M : Type u_1} {A : Type u_3} {B : Type u_4} [Zero A] [Zero B] [MonoidWithZero M] [MulActionWithZero M B] :
      Equations
        theorem AddMonoidHom.coe_smul {M : Type u_1} {A : Type u_3} {B : Type u_4} [AddZeroClass A] [AddZeroClass B] [DistribSMul M B] (m : M) (f : A โ†’+ B) :
        โ‡‘(m โ€ข f) = m โ€ข โ‡‘f
        @[simp]
        theorem AddMonoidHom.smul_apply {M : Type u_1} {A : Type u_3} {B : Type u_4} [AddZeroClass A] [AddZeroClass B] [DistribSMul M B] (m : M) (f : A โ†’+ B) (a : A) :
        (m โ€ข f) a = m โ€ข f a
        theorem AddMonoidHom.smul_comp {M : Type u_1} {A : Type u_3} {B : Type u_4} {C : Type u_5} [AddZeroClass A] [AddZeroClass B] [AddZeroClass C] [DistribSMul M C] (m : M) (g : B โ†’+ C) (f : A โ†’+ B) :
        (m โ€ข g).comp f = m โ€ข g.comp f
        instance AddMonoidHom.instSMulCommClass {M : Type u_1} {N : Type u_2} {A : Type u_3} {B : Type u_4} [AddZeroClass A] [AddZeroClass B] [DistribSMul M B] [DistribSMul N B] [SMulCommClass M N B] :
        instance AddMonoidHom.instIsScalarTower {M : Type u_1} {N : Type u_2} {A : Type u_3} {B : Type u_4} [AddZeroClass A] [AddZeroClass B] [SMul M N] [DistribSMul M B] [DistribSMul N B] [IsScalarTower M N B] :
        instance AddMonoidHom.instDistribSMul {M : Type u_1} {A : Type u_3} {B : Type u_4} [AddZeroClass A] [AddCommMonoid B] [DistribSMul M B] :
        Equations