Documentation

Mathlib.Algebra.GroupWithZero.Associated

Associated elements. #

In this file we define an equivalence relation Associated saying that two elements of a monoid differ by a multiplication by a unit. Then we show that the quotient type Associates is a monoid and prove basic properties of this quotient.

def Associated {M : Type u_1} [Monoid M] (x y : M) :

Two elements of a Monoid are Associated if one of them is another one multiplied by a unit on the right.

Equations
    Instances For
      theorem Associated.refl {M : Type u_1} [Monoid M] (x : M) :
      @[simp]
      theorem Associated.rfl {M : Type u_1} [Monoid M] {x : M} :
      theorem Associated.symm {M : Type u_1} [Monoid M] {x y : M} :
      Associated x y โ†’ Associated y x
      theorem Associated.trans {M : Type u_1} [Monoid M] {x y z : M} :
      Associated x y โ†’ Associated y z โ†’ Associated x z
      def Associated.setoid (M : Type u_2) [Monoid M] :

      The setoid of the relation x ~แตค y iff there is a unit u such that x * u = y

      Equations
        Instances For
          theorem Associated.map {M : Type u_2} {N : Type u_3} [Monoid M] [Monoid N] {F : Type u_4} [FunLike F M N] [MonoidHomClass F M N] (f : F) {x y : M} (ha : Associated x y) :
          Associated (f x) (f y)
          theorem Associated.of_eq {M : Type u_1} [Monoid M] {a b : M} (h : a = b) :
          theorem unit_associated_one {M : Type u_1} [Monoid M] {u : Mหฃ} :
          Associated (โ†‘u) 1
          theorem associated_one_of_mul_eq_one {M : Type u_1} [CommMonoid M] {a : M} (b : M) (hab : a * b = 1) :
          theorem associated_one_of_associated_mul_one {M : Type u_1} [CommMonoid M] {a b : M} :
          Associated (a * b) 1 โ†’ Associated a 1
          theorem associated_mul_unit_left {N : Type u_2} [Monoid N] (a u : N) (hu : IsUnit u) :
          Associated (a * u) a
          theorem associated_unit_mul_left {N : Type u_2} [CommMonoid N] (a u : N) (hu : IsUnit u) :
          Associated (u * a) a
          theorem associated_mul_unit_right {N : Type u_2} [Monoid N] (a u : N) (hu : IsUnit u) :
          Associated a (a * u)
          theorem associated_unit_mul_right {N : Type u_2} [CommMonoid N] (a u : N) (hu : IsUnit u) :
          Associated a (u * a)
          @[simp]
          theorem associated_mul_unit_left_iff {N : Type u_2} [Monoid N] {a b : N} {u : Nหฃ} :
          Associated (a * โ†‘u) b โ†” Associated a b
          @[simp]
          theorem associated_unit_mul_left_iff {N : Type u_2} [CommMonoid N] {a b : N} {u : Nหฃ} :
          Associated (โ†‘u * a) b โ†” Associated a b
          @[simp]
          theorem associated_mul_unit_right_iff {N : Type u_2} [Monoid N] {a b : N} {u : Nหฃ} :
          Associated a (b * โ†‘u) โ†” Associated a b
          @[simp]
          theorem associated_unit_mul_right_iff {N : Type u_2} [CommMonoid N] {a b : N} {u : Nหฃ} :
          Associated a (โ†‘u * b) โ†” Associated a b
          theorem Associated.mul_left {M : Type u_1} [Monoid M] (a : M) {b c : M} (h : Associated b c) :
          Associated (a * b) (a * c)
          theorem Associated.mul_right {M : Type u_1} [CommMonoid M] {a b : M} (h : Associated a b) (c : M) :
          Associated (a * c) (b * c)
          theorem Associated.mul_mul {M : Type u_1} [CommMonoid M] {aโ‚ aโ‚‚ bโ‚ bโ‚‚ : M} (hโ‚ : Associated aโ‚ bโ‚) (hโ‚‚ : Associated aโ‚‚ bโ‚‚) :
          Associated (aโ‚ * aโ‚‚) (bโ‚ * bโ‚‚)
          theorem Associated.pow_pow {M : Type u_1} [CommMonoid M] {a b : M} {n : โ„•} (h : Associated a b) :
          Associated (a ^ n) (b ^ n)
          theorem Associated.dvd {M : Type u_1} [Monoid M] {a b : M} :
          Associated a b โ†’ a โˆฃ b
          theorem Associated.dvd' {M : Type u_1} [Monoid M] {a b : M} (h : Associated a b) :
          theorem Associated.dvd_dvd {M : Type u_1} [Monoid M] {a b : M} (h : Associated a b) :
          theorem associated_of_dvd_dvd {M : Type u_1} [MonoidWithZero M] [IsLeftCancelMulZero M] {a b : M} (hab : a โˆฃ b) (hba : b โˆฃ a) :
          theorem Associated.eq_zero_iff {M : Type u_1} [MonoidWithZero M] {a b : M} (h : Associated a b) :
          a = 0 โ†” b = 0
          theorem Associated.ne_zero_iff {M : Type u_1} [MonoidWithZero M] {a b : M} (h : Associated a b) :
          theorem Associated.prime {M : Type u_1} [CommMonoidWithZero M] {p q : M} (h : Associated p q) (hp : Prime p) :
          @[simp]
          theorem prime_pow_iff {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] {p : M} {n : โ„•} :
          theorem Irreducible.associated_of_dvd {M : Type u_1} [Monoid M] {p q : M} (p_irr : Irreducible p) (q_irr : Irreducible q) (dvd : p โˆฃ q) :
          theorem Prime.associated_of_dvd {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] {p q : M} (p_prime : Prime p) (q_prime : Prime q) (dvd : p โˆฃ q) :
          theorem Associated.isUnit {M : Type u_1} [Monoid M] {a b : M} (h : Associated a b) :
          IsUnit a โ†’ IsUnit b
          theorem Associated.irreducible {M : Type u_1} [Monoid M] {p q : M} (h : Associated p q) (hp : Irreducible p) :
          theorem Associated.of_mul_left {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] {a b c d : M} (h : Associated (a * b) (c * d)) (hโ‚ : Associated a c) (ha : a โ‰  0) :
          theorem Associated.of_mul_right {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] {a b c d : M} :
          Associated (a * b) (c * d) โ†’ Associated b d โ†’ b โ‰  0 โ†’ Associated a c
          theorem Associated.of_pow_associated_of_prime {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] {pโ‚ pโ‚‚ : M} {kโ‚ kโ‚‚ : โ„•} (hpโ‚ : Prime pโ‚) (hpโ‚‚ : Prime pโ‚‚) (hkโ‚ : 0 < kโ‚) (h : Associated (pโ‚ ^ kโ‚) (pโ‚‚ ^ kโ‚‚)) :
          Associated pโ‚ pโ‚‚
          theorem Associated.of_pow_associated_of_prime' {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] {pโ‚ pโ‚‚ : M} {kโ‚ kโ‚‚ : โ„•} (hpโ‚ : Prime pโ‚) (hpโ‚‚ : Prime pโ‚‚) (hkโ‚‚ : 0 < kโ‚‚) (h : Associated (pโ‚ ^ kโ‚) (pโ‚‚ ^ kโ‚‚)) :
          Associated pโ‚ pโ‚‚
          theorem eq_of_prime_pow_eq {R : Type u_2} [CommMonoidWithZero R] [IsCancelMulZero R] [Subsingleton Rหฃ] {pโ‚ pโ‚‚ : R} {kโ‚ kโ‚‚ : โ„•} (hpโ‚ : Prime pโ‚) (hpโ‚‚ : Prime pโ‚‚) (hkโ‚ : 0 < kโ‚) (h : pโ‚ ^ kโ‚ = pโ‚‚ ^ kโ‚‚) :
          pโ‚ = pโ‚‚
          theorem eq_of_prime_pow_eq' {R : Type u_2} [CommMonoidWithZero R] [IsCancelMulZero R] [Subsingleton Rหฃ] {pโ‚ pโ‚‚ : R} {kโ‚ kโ‚‚ : โ„•} (hpโ‚ : Prime pโ‚) (hpโ‚‚ : Prime pโ‚‚) (hkโ‚ : 0 < kโ‚‚) (h : pโ‚ ^ kโ‚ = pโ‚‚ ^ kโ‚‚) :
          pโ‚ = pโ‚‚
          @[reducible, inline]
          abbrev Associates (M : Type u_2) [Monoid M] :
          Type u_2

          The quotient of a monoid by the Associated relation. Two elements x and y are associated iff there is a unit u such that x * u = y. There is a natural monoid structure on Associates M.

          Equations
            Instances For
              @[reducible, inline]
              abbrev Associates.mk {M : Type u_2} [Monoid M] (a : M) :

              The canonical quotient map from a monoid M into the Associates of M

              Equations
                Instances For
                  theorem Associates.forall_associated {M : Type u_1} [Monoid M] {p : Associates M โ†’ Prop} :
                  (โˆ€ (a : Associates M), p a) โ†” โˆ€ (a : M), p (Associates.mk a)
                  theorem Associates.exists_rep {M : Type u_1} [Monoid M] (a : Associates M) :
                  โˆƒ (a0 : M), Associates.mk a0 = a
                  theorem Associates.dvd_eq_le {M : Type u_1} [CommMonoid M] :
                  (fun (x1 x2 : Associates M) => x1 โˆฃ x2) = fun (x1 x2 : Associates M) => x1 โ‰ค x2
                  @[simp]
                  theorem Associates.coe_unit_eq_one {M : Type u_1} [CommMonoid M] (u : (Associates M)หฃ) :
                  โ†‘u = 1
                  theorem Associates.mul_mono {M : Type u_1} [CommMonoid M] {a b c d : Associates M} (hโ‚ : a โ‰ค b) (hโ‚‚ : c โ‰ค d) :
                  a * c โ‰ค b * d
                  instance Associates.instZero {M : Type u_1} [Zero M] [Monoid M] :
                  Equations
                    theorem Associates.exists_non_zero_rep {M : Type u_1} [MonoidWithZero M] {a : Associates M} :
                    a โ‰  0 โ†’ โˆƒ (a0 : M), a0 โ‰  0 โˆง Associates.mk a0 = a
                    instance Associates.instDecidableRelDvd {M : Type u_1} [CommMonoidWithZero M] [DecidableRel fun (x1 x2 : M) => x1 โˆฃ x2] :
                    DecidableRel fun (x1 x2 : Associates M) => x1 โˆฃ x2
                    Equations
                      theorem Associates.Prime.le_or_le {M : Type u_1} [CommMonoidWithZero M] {p : Associates M} (hp : Prime p) {a b : Associates M} (h : p โ‰ค a * b) :
                      theorem Associates.le_of_mul_le_mul_left {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] (a b c : Associates M) (ha : a โ‰  0) :
                      a * b โ‰ค a * c โ†’ b โ‰ค c
                      theorem dvdNotUnit_of_dvdNotUnit_associated {M : Type u_1} [CommMonoidWithZero M] [Nontrivial M] {p q r : M} (h : DvdNotUnit p q) (h' : Associated q r) :
                      theorem isUnit_of_associated_mul {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] {p b : M} (h : Associated (p * b) p) (hp : p โ‰  0) :
                      theorem dvd_prime_pow {M : Type u_1} [CommMonoidWithZero M] [IsCancelMulZero M] {p q : M} (hp : Prime p) (n : โ„•) :
                      q โˆฃ p ^ n โ†” โˆƒ i โ‰ค n, Associated q (p ^ i)