Documentation

Mathlib.Algebra.Lie.Quotient

Quotients of Lie algebras and Lie modules #

Given a Lie submodule of a Lie module, the quotient carries a natural Lie module structure. In the special case that the Lie module is the Lie algebra itself via the adjoint action, the submodule is a Lie ideal and the quotient carries a natural Lie algebra structure.

We define these quotient structures here. A notable omission at the time of writing (February 2021) is a statement and proof of the universal property of these quotients.

Main definitions #

Tags #

lie algebra, quotient

instance LieSubmodule.instHasQuotient {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] :

The quotient of a Lie module by a Lie submodule. It is a Lie module.

Equations
    instance LieSubmodule.Quotient.module' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} {S : Type u_1} [Semiring S] [SMul S R] [Module S M] [IsScalarTower S R M] :
    Equations
      instance LieSubmodule.Quotient.module {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} :
      Equations
        instance LieSubmodule.Quotient.inhabited {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} :
        Equations
          @[reducible, inline]
          abbrev LieSubmodule.Quotient.mk {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} :
          M โ†’ M โงธ N

          Map sending an element of M to the corresponding element of M โงธ N, when N is a Lie submodule of the Lie module M.

          Equations
            Instances For
              @[simp]
              theorem LieSubmodule.Quotient.mk_eq_zero' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} {m : M} :
              def LieSubmodule.Quotient.lieSubmoduleInvariant {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N : LieSubmodule R L M} [LieAlgebra R L] [LieModule R L M] :
              L โ†’โ‚—[R] โ†ฅ((โ†‘N).compatibleMaps โ†‘N)

              Given a Lie module M over a Lie algebra L, together with a Lie submodule N โІ M, there is a natural linear map from L to the endomorphisms of M leaving N invariant.

              Equations
                Instances For

                  Given a Lie module M over a Lie algebra L, together with a Lie submodule N โІ M, there is a natural Lie algebra morphism from L to the linear endomorphism of the quotient M/N.

                  Equations
                    Instances For
                      instance LieSubmodule.Quotient.actionAsEndoMapBracket {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :

                      Given a Lie module M over a Lie algebra L, together with a Lie submodule N โІ M, there is a natural bracket action of L on the quotient M/N.

                      Equations
                        instance LieSubmodule.Quotient.lieQuotientLieModule {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :

                        The quotient of a Lie module by a Lie submodule, is a Lie module.

                        @[simp]
                        theorem LieSubmodule.Quotient.mk'_apply {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] (aโœ : M) :
                        (mk' N) aโœ = mk aโœ
                        @[simp]
                        theorem LieSubmodule.Quotient.surjective_mk' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :
                        @[simp]
                        theorem LieSubmodule.Quotient.range_mk' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :
                        theorem LieSubmodule.Quotient.mk_eq_zero {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] {m : M} :
                        (mk' N) m = 0 โ†” m โˆˆ N
                        @[simp]
                        theorem LieSubmodule.Quotient.mk'_ker {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :
                        (mk' N).ker = N
                        @[simp]
                        theorem LieSubmodule.Quotient.map_mk'_eq_bot_le {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N N' : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] :
                        theorem LieSubmodule.Quotient.lieModuleHom_ext {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] โฆƒf g : M โงธ N โ†’โ‚—โ…R,Lโ† Mโฆ„ (h : f.comp (mk' N) = g.comp (mk' N)) :
                        f = g

                        Two LieModuleHoms from a quotient lie module are equal if their compositions with LieSubmodule.Quotient.mk' are equal.

                        See note [partially-applied ext lemmas].

                        theorem LieSubmodule.Quotient.toEnd_comp_mk' {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieAlgebra R L] [LieModule R L M] (x : L) :
                        (LieModule.toEnd R L (M โงธ N)) x โˆ˜โ‚— โ†‘(mk' N) = โ†‘(mk' N) โˆ˜โ‚— (LieModule.toEnd R L M) x
                        noncomputable def LieHom.quotKerEquivRange {R : Type u_1} {L : Type u_2} {L' : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (f : L โ†’โ‚—โ…Rโ† L') :

                        The first isomorphism theorem for morphisms of Lie algebras.

                        Equations
                          Instances For
                            @[simp]
                            theorem LieHom.quotKerEquivRange_invFun {R : Type u_1} {L : Type u_2} {L' : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (f : L โ†’โ‚—โ…Rโ† L') (aโœ : โ†ฅ(โ†‘f).range) :
                            f.quotKerEquivRange.invFun aโœ = (โ†‘f).quotKerEquivRange.invFun aโœ
                            @[simp]
                            theorem LieHom.quotKerEquivRange_toFun {R : Type u_1} {L : Type u_2} {L' : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (f : L โ†’โ‚—โ…Rโ† L') (a : L โงธ (โ†‘f).ker) :