Documentation

Mathlib.Algebra.Lie.Rank

Rank of a Lie algebra and regular elements #

Let L be a Lie algebra over a nontrivial commutative ring R, and assume that L is finite free as R-module. Then the coefficients of the characteristic polynomial of ad R L x are polynomial in x. The rank of L is the smallest n for which the n-th coefficient is not the zero polynomial.

Continuing to write n for the rank of L, an element x of L is regular if the n-th coefficient of the characteristic polynomial of ad R L x is non-zero.

Main declarations #

References #

noncomputable def LieModule.rank (R : Type u_1) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [Module.Finite R M] [Module.Free R M] :

Let M be a representation of a Lie algebra L over a nontrivial commutative ring R, and assume that L and M are finite free as R-module. Then the coefficients of the characteristic polynomial of โ…x, ยทโ† are polynomial in x. The rank of M is the smallest n for which the n-th coefficient is not the zero polynomial.

Equations
    Instances For
      theorem LieModule.polyCharpoly_coeff_rank_ne_zero (R : Type u_1) (L : Type u_3) (M : Type u_4) {ฮน : Type u_5} [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [Module.Finite R M] [Module.Free R M] [Fintype ฮน] (b : Module.Basis ฮน R L) [Nontrivial R] [DecidableEq ฮน] :
      ((โ†‘(toEnd R L M)).polyCharpoly b).coeff (rank R L M) โ‰  0
      theorem LieModule.rank_eq_natTrailingDegree (R : Type u_1) (L : Type u_3) (M : Type u_4) {ฮน : Type u_5} [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [Module.Finite R M] [Module.Free R M] [Fintype ฮน] (b : Module.Basis ฮน R L) [Nontrivial R] [DecidableEq ฮน] :
      rank R L M = ((โ†‘(toEnd R L M)).polyCharpoly b).natTrailingDegree
      theorem LieModule.rank_le_card (R : Type u_1) (L : Type u_3) (M : Type u_4) {ฮนโ‚˜ : Type u_6} [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [Module.Finite R M] [Module.Free R M] [Fintype ฮนโ‚˜] (bโ‚˜ : Module.Basis ฮนโ‚˜ R M) [Nontrivial R] :
      rank R L M โ‰ค Fintype.card ฮนโ‚˜
      def LieModule.IsRegular (R : Type u_1) {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [Module.Finite R M] [Module.Free R M] (x : L) :

      Let x be an element of a Lie algebra L over R, and write n for rank R L. Then x is regular if the n-th coefficient of the characteristic polynomial of ad R L x is non-zero.

      Equations
        Instances For
          theorem LieModule.isRegular_def (R : Type u_1) {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [Module.Finite R M] [Module.Free R M] (x : L) :
          theorem LieModule.isRegular_iff_coeff_polyCharpoly_rank_ne_zero (R : Type u_1) {L : Type u_3} (M : Type u_4) {ฮน : Type u_5} [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [Module.Finite R M] [Module.Free R M] [Fintype ฮน] (b : Module.Basis ฮน R L) (x : L) [DecidableEq ฮน] :
          IsRegular R M x โ†” (MvPolynomial.eval โ‡‘(b.repr x)) (((โ†‘(toEnd R L M)).polyCharpoly b).coeff (rank R L M)) โ‰  0
          theorem LieModule.exists_isRegular_of_finrank_le_card (R : Type u_1) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [Module.Finite R M] [Module.Free R M] [IsDomain R] (h : โ†‘(Module.finrank R M) โ‰ค Cardinal.mk R) :
          โˆƒ (x : L), IsRegular R M x
          theorem LieModule.exists_isRegular (R : Type u_1) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [Module.Finite R M] [Module.Free R M] [IsDomain R] [Infinite R] :
          โˆƒ (x : L), IsRegular R M x
          @[reducible, inline]
          noncomputable abbrev LieAlgebra.rank (R : Type u_1) (L : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] :

          Let L be a Lie algebra over a nontrivial commutative ring R, and assume that L is finite free as R-module. Then the coefficients of the characteristic polynomial of ad R L x are polynomial in x. The rank of L is the smallest n for which the n-th coefficient is not the zero polynomial.

          Equations
            Instances For
              theorem LieAlgebra.polyCharpoly_coeff_rank_ne_zero (R : Type u_1) (L : Type u_3) {ฮน : Type u_5} [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [Fintype ฮน] (b : Module.Basis ฮน R L) [Nontrivial R] [DecidableEq ฮน] :
              ((โ†‘(ad R L)).polyCharpoly b).coeff (rank R L) โ‰  0
              theorem LieAlgebra.rank_eq_natTrailingDegree (R : Type u_1) (L : Type u_3) {ฮน : Type u_5} [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [Fintype ฮน] (b : Module.Basis ฮน R L) [Nontrivial R] [DecidableEq ฮน] :
              rank R L = ((โ†‘(ad R L)).polyCharpoly b).natTrailingDegree
              theorem LieAlgebra.rank_le_card (R : Type u_1) (L : Type u_3) {ฮน : Type u_5} [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [Fintype ฮน] (b : Module.Basis ฮน R L) [Nontrivial R] :
              @[reducible, inline]
              abbrev LieAlgebra.IsRegular (R : Type u_1) {L : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] (x : L) :

              Let x be an element of a Lie algebra L over R, and write n for rank R L. Then x is regular if the n-th coefficient of the characteristic polynomial of ad R L x is non-zero.

              Equations
                Instances For
                  theorem LieAlgebra.isRegular_iff_coeff_polyCharpoly_rank_ne_zero (R : Type u_1) {L : Type u_3} {ฮน : Type u_5} [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [Fintype ฮน] (b : Module.Basis ฮน R L) (x : L) [DecidableEq ฮน] :
                  IsRegular R x โ†” (MvPolynomial.eval โ‡‘(b.repr x)) (((โ†‘(ad R L)).polyCharpoly b).coeff (rank R L)) โ‰  0
                  theorem LieAlgebra.exists_isRegular (R : Type u_1) (L : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [Module.Finite R L] [Module.Free R L] [IsDomain R] [Infinite R] :
                  โˆƒ (x : L), IsRegular R x