Documentation

Mathlib.Algebra.Module.Injective

Injective modules #

Main definitions #

Main statements #

class Module.Injective (R : Type u) [Ring R] (Q : Type v) [AddCommGroup Q] [Module R Q] :

An R-module Q is injective if and only if every injective R-linear map descends to a linear map to Q, i.e. in the following diagram, if f is injective then there is an R-linear map h : Y ⟶ Q such that g = h ∘ f

X --- f ---> Y
|
| g
v
Q
Instances
    theorem Module.injective_iff (R : Type u) [Ring R] (Q : Type v) [AddCommGroup Q] [Module R Q] :
    Injective R Q ↔ āˆ€ ⦃X Y : Type v⦄ [inst : AddCommGroup X] [inst_1 : AddCommGroup Y] [inst_2 : Module R X] [inst_3 : Module R Y] (f : X →ₗ[R] Y), Function.Injective ⇑f → āˆ€ (g : X →ₗ[R] Q), ∃ (h : Y →ₗ[R] Q), āˆ€ (x : X), h (f x) = g x
    def Module.Baer (R : Type u) [Ring R] (Q : Type v) [AddCommGroup Q] [Module R Q] :

    An R-module Q satisfies Baer's criterion if any R-linear map from an Ideal R extends to an R-linear map R ⟶ Q

    Equations
      Instances For
        theorem Module.Baer.of_equiv {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} [AddCommGroup M] [Module R M] (e : Q ā‰ƒā‚—[R] M) (h : Baer R Q) :
        Baer R M
        theorem Module.Baer.congr {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} [AddCommGroup M] [Module R M] (e : Q ā‰ƒā‚—[R] M) :
        Baer R Q ↔ Baer R M
        structure Module.Baer.ExtensionOf {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) extends N →ₗ.[R] Q :
        Type (max u_2 v)

        If we view M as a submodule of N via the injective linear map i : M ↪ N, then a submodule between M and N is a submodule N' of N. To prove Baer's criterion, we need to consider pairs of (N', f') such that M ≤ N' ≤ N and f' extends f.

        Instances For
          theorem Module.Baer.ExtensionOf.ext {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {a b : ExtensionOf i f} (domain_eq : a.domain = b.domain) (to_fun_eq : āˆ€ ⦃x : N⦄ ⦃ha : x ∈ a.domain⦄ ⦃hb : x ∈ b.domain⦄, ↑a.toLinearPMap ⟨x, ha⟩ = ↑b.toLinearPMap ⟨x, hb⟩) :
          a = b
          theorem Module.Baer.ExtensionOf.dExt {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {a b : ExtensionOf i f} (domain_eq : a.domain = b.domain) (to_fun_eq : āˆ€ ⦃x : ↄa.domain⦄ ⦃y : ↄb.domain⦄, ↑x = ↑y → ↑a.toLinearPMap x = ↑b.toLinearPMap y) :
          a = b

          A dependent version of ExtensionOf.ext

          theorem Module.Baer.ExtensionOf.dExt_iff {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {a b : ExtensionOf i f} :
          a = b ↔ ∃ (_ : a.domain = b.domain), āˆ€ ⦃x : ↄa.domain⦄ ⦃y : ↄb.domain⦄, ↑x = ↑y → ↑a.toLinearPMap x = ↑b.toLinearPMap y
          instance Module.Baer.instMinExtensionOf {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) :
          Equations
            instance Module.Baer.instPartialOrderExtensionOf {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) :
            Equations
              instance Module.Baer.instSemilatticeInfExtensionOf {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) :
              Equations
                theorem Module.Baer.chain_linearPMap_of_chain_extensionOf {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {c : Set (ExtensionOf i f)} (hchain : IsChain (fun (x1 x2 : ExtensionOf i f) => x1 ≤ x2) c) :
                IsChain (fun (x1 x2 : N →ₗ.[R] Q) => x1 ≤ x2) ((fun (x : ExtensionOf i f) => x.toLinearPMap) '' c)
                def Module.Baer.ExtensionOf.max {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {c : Set (ExtensionOf i f)} (hchain : IsChain (fun (x1 x2 : ExtensionOf i f) => x1 ≤ x2) c) (hnonempty : c.Nonempty) :

                The maximal element of every nonempty chain of extension_of i f.

                Equations
                  Instances For
                    theorem Module.Baer.ExtensionOf.le_max {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {c : Set (ExtensionOf i f)} (hchain : IsChain (fun (x1 x2 : ExtensionOf i f) => x1 ≤ x2) c) (hnonempty : c.Nonempty) (a : ExtensionOf i f) (ha : a ∈ c) :
                    a ≤ max hchain hnonempty
                    instance Module.Baer.ExtensionOf.inhabited {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] :
                    Equations
                      def Module.Baer.extensionOfMax {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] :

                      Since every nonempty chain has a maximal element, by Zorn's lemma, there is a maximal extension_of i f.

                      Equations
                        Instances For
                          theorem Module.Baer.extensionOfMax_is_max {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (a : ExtensionOf i f) :
                          @[reducible, inline]
                          abbrev Module.Baer.supExtensionOfMaxSingleton {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (y : N) :
                          Equations
                            Instances For
                              def Module.Baer.ExtensionOfMaxAdjoin.fst {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) {f : M →ₗ[R] Q} [Fact (Function.Injective ⇑i)] {y : N} (x : ↄ(supExtensionOfMaxSingleton i f y)) :
                              ↄ(extensionOfMax i f).domain

                              If x ∈ M āŠ” ⟨y⟩, then x = m + r • y, fst pick an arbitrary such m.

                              Equations
                                Instances For
                                  def Module.Baer.ExtensionOfMaxAdjoin.snd {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) {f : M →ₗ[R] Q} [Fact (Function.Injective ⇑i)] {y : N} (x : ↄ(supExtensionOfMaxSingleton i f y)) :
                                  R

                                  If x ∈ M āŠ” ⟨y⟩, then x = m + r • y, snd pick an arbitrary such r.

                                  Equations
                                    Instances For
                                      theorem Module.Baer.ExtensionOfMaxAdjoin.eqn {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) {f : M →ₗ[R] Q} [Fact (Function.Injective ⇑i)] {y : N} (x : ↄ(supExtensionOfMaxSingleton i f y)) :
                                      ↑x = ↑(fst i x) + snd i x • y
                                      def Module.Baer.ExtensionOfMaxAdjoin.ideal {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (y : N) :

                                      The ideal I = {r | r • y ∈ N}

                                      Equations
                                        Instances For
                                          def Module.Baer.ExtensionOfMaxAdjoin.idealTo {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (y : N) :
                                          ↄ(ideal i f y) →ₗ[R] Q

                                          A linear map I ⟶ Q by x ↦ f' (x • y) where f' is the maximal extension

                                          Equations
                                            Instances For
                                              def Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (h : Baer R Q) (y : N) :

                                              Since we assumed Q being Baer, the linear map x ↦ f' (x • y) : I ⟶ Q extends to R ⟶ Q, call this extended map φ

                                              Equations
                                                Instances For
                                                  theorem Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_is_extension {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (h : Baer R Q) (y : N) (x : R) (mem : x ∈ ideal i f y) :
                                                  (extendIdealTo i f h y) x = (idealTo i f y) ⟨x, mem⟩
                                                  theorem Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_wd' {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (h : Baer R Q) {y : N} (r : R) (eq1 : r • y = 0) :
                                                  (extendIdealTo i f h y) r = 0
                                                  theorem Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_wd {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (h : Baer R Q) {y : N} (r r' : R) (eq1 : r • y = r' • y) :
                                                  (extendIdealTo i f h y) r = (extendIdealTo i f h y) r'
                                                  theorem Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_eq {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (h : Baer R Q) {y : N} (r : R) (hr : r • y ∈ (extensionOfMax i f).domain) :
                                                  def Module.Baer.ExtensionOfMaxAdjoin.extensionToFun {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (h : Baer R Q) {y : N} :
                                                  ↄ(supExtensionOfMaxSingleton i f y) → Q

                                                  We can finally define a linear map M āŠ” ⟨y⟩ ⟶ Q by x + r • y ↦ f x + φ r

                                                  Equations
                                                    Instances For
                                                      theorem Module.Baer.ExtensionOfMaxAdjoin.extensionToFun_wd {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (h : Baer R Q) {y : N} (x : ↄ(supExtensionOfMaxSingleton i f y)) (a : ↄ(extensionOfMax i f).domain) (r : R) (eq1 : ↑x = ↑a + r • y) :
                                                      extensionToFun i f h x = ↑(extensionOfMax i f).toLinearPMap a + (extendIdealTo i f h y) r
                                                      def Module.Baer.extensionOfMaxAdjoin {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (h : Baer R Q) (y : N) :

                                                      The linear map M āŠ” ⟨y⟩ ⟶ Q by x + r • y ↦ f x + φ r is an extension of f

                                                      Equations
                                                        Instances For
                                                          theorem Module.Baer.extensionOfMax_le {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (h : Baer R Q) {y : N} :
                                                          theorem Module.Baer.extensionOfMax_to_submodule_eq_top {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective ⇑i)] (h : Baer R Q) :
                                                          theorem Module.Baer.extension_property {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (h : Baer R Q) (f : M →ₗ[R] N) (hf : Function.Injective ⇑f) (g : M →ₗ[R] Q) :
                                                          ∃ (h : N →ₗ[R] Q), h āˆ˜ā‚— f = g
                                                          theorem Module.Baer.extension_property_addMonoidHom {Q : Type v} [AddCommGroup Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] (h : Baer ℤ Q) (f : M →+ N) (hf : Function.Injective ⇑f) (g : M →+ Q) :
                                                          ∃ (h : N →+ Q), h.comp f = g
                                                          theorem Module.Baer.injective {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] (h : Baer R Q) :

                                                          Baer's criterion for injective module : a Baer module is an injective module, i.e. if every linear map from an ideal can be extended, then the module is injective.

                                                          theorem Module.Baer.of_injective {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] [Small.{v, u} R] (inj : Injective R Q) :
                                                          Baer R Q
                                                          theorem Module.Injective.extension_property (R : Type uR) [Ring R] [Small.{uM, uR} R] (M : Type uM) [AddCommGroup M] [Module R M] [inj : Injective R M] (P : Type uP) [AddCommGroup P] [Module R P] (P' : Type uP') [AddCommGroup P'] [Module R P'] (f : P →ₗ[R] P') (hf : Function.Injective ⇑f) (g : P →ₗ[R] M) :
                                                          ∃ (h : P' →ₗ[R] M), h āˆ˜ā‚— f = g
                                                          instance Module.Injective.pi (R : Type u) [Ring R] {ι : Type w} (M : ι → Type v) [Small.{v, u} R] [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] [āˆ€ (i : ι), Injective R (M i)] :
                                                          Injective R ((i : ι) → M i)