Documentation

Mathlib.Algebra.Module.Rat

Basic results about modules over the rationals. #

theorem map_nnratCast_smul {M : Type u_1} {Mβ‚‚ : Type u_2} [AddCommMonoid M] [AddCommMonoid Mβ‚‚] {F : Type u_3} [FunLike F M Mβ‚‚] [AddMonoidHomClass F M Mβ‚‚] (f : F) (R : Type u_4) (S : Type u_5) [DivisionSemiring R] [DivisionSemiring S] [Module R M] [Module S Mβ‚‚] (c : β„šβ‰₯0) (x : M) :
f (↑c β€’ x) = ↑c β€’ f x
theorem map_ratCast_smul {M : Type u_1} {Mβ‚‚ : Type u_2} [AddCommGroup M] [AddCommGroup Mβ‚‚] {F : Type u_3} [FunLike F M Mβ‚‚] [AddMonoidHomClass F M Mβ‚‚] (f : F) (R : Type u_4) (S : Type u_5) [DivisionRing R] [DivisionRing S] [Module R M] [Module S Mβ‚‚] (c : β„š) (x : M) :
f (↑c β€’ x) = ↑c β€’ f x
theorem map_nnrat_smul {M : Type u_1} {Mβ‚‚ : Type u_2} [AddCommMonoid M] [AddCommMonoid Mβ‚‚] [_instM : Module β„šβ‰₯0 M] [_instMβ‚‚ : Module β„šβ‰₯0 Mβ‚‚] {F : Type u_3} [FunLike F M Mβ‚‚] [AddMonoidHomClass F M Mβ‚‚] (f : F) (c : β„šβ‰₯0) (x : M) :
f (c β€’ x) = c β€’ f x
theorem map_rat_smul {M : Type u_1} {Mβ‚‚ : Type u_2} [AddCommGroup M] [AddCommGroup Mβ‚‚] [_instM : Module β„š M] [_instMβ‚‚ : Module β„š Mβ‚‚] {F : Type u_3} [FunLike F M Mβ‚‚] [AddMonoidHomClass F M Mβ‚‚] (f : F) (c : β„š) (x : M) :
f (c β€’ x) = c β€’ f x

There can be at most one Module β„šβ‰₯0 E structure on an additive commutative monoid.

There can be at most one Module β„š E structure on an additive commutative group.

theorem nnratCast_smul_eq {E : Type u_3} (R : Type u_4) (S : Type u_5) [AddCommMonoid E] [DivisionSemiring R] [DivisionSemiring S] [Module R E] [Module S E] (r : β„šβ‰₯0) (x : E) :
↑r β€’ x = ↑r β€’ x

If E is a vector space over two division semirings R and S, then scalar multiplications agree on non-negative rational numbers in R and S.

theorem ratCast_smul_eq {E : Type u_3} (R : Type u_4) (S : Type u_5) [AddCommGroup E] [DivisionRing R] [DivisionRing S] [Module R E] [Module S E] (r : β„š) (x : E) :
↑r β€’ x = ↑r β€’ x

If E is a vector space over two division rings R and S, then scalar multiplications agree on rational numbers in R and S.

nnqsmul is equal to any other module structure via a cast.

theorem Rat.cast_smul_eq_qsmul {M : Type u_1} (R : Type u_3) [DivisionRing R] [MulAction R M] [MulAction β„š M] [IsScalarTower β„š R M] (q : β„š) (x : M) :
↑q β€’ x = q β€’ x

qsmul is equal to any other module structure via a cast.

A β„šβ‰₯0-module is torsion-free as a group.

This instance will fire for any monoid M, so is local unless needed elsewhere.

A β„šβ‰₯0-module is torsion-free as a group.

This instance will fire for any monoid M, so is local unless needed elsewhere.